

ESL

ESL Simulation Software
ESL Reference Manual

ESL Simulation Software - ESL Reference Manual ii

Copyright © ISIM International Simulation Limited 2022 – All Rights Reserved

Document Information

Version: 1.9.2
Date Published: February 2022

This document relates to ESL version 8.2.5

ISIM welcomes any suggestions to improve
the ESL Simulation Software and documentation

If you have any suggestions, or would like to point out
any errors or omissions, please contact us:

ISIM International Simulation Limited

161 Claremont Road
Salford
M6 8PA
UK

Tel: +44 (0) 161-736-5283

Email: info@isimsimulation.com
Web: https://www.isimsimulation.com

 Table of Contents

ESL Simulation Software - ESL Reference Manual iii

Table of Contents
1 Introduction.. 1-1

1.1 Introduction... 1-1

2 ESL Language Specification .. 2-1
2.1 Introduction... 2-1
2.2 MBNF Syntax Convention .. 2-1
2.3 Lexical Elements .. 2-1

2.3.1 Character sets ... 2-2
2.3.2 Identifiers and variables .. 2-2
2.3.3 Character strings ... 2-3
2.3.4 Keywords .. 2-3

2.3.4.1 Program and subprogram ... 2-3
2.3.4.2 Region keywords .. 2-4
2.3.4.3 Statement keywords ... 2-4

2.3.5 ESL numbers .. 2-1
2.3.6 ESL delimiters ... 2-1

2.4 COMMENTS .. 2-3
2.5 INCLUDE Directive .. 2-4
2.6 Program Structure .. 2-4

2.6.1 MODEL ... 2-5
2.6.2 SUBMODEL .. 2-6
2.6.3 SEGMENT .. 2-7
2.6.4 PROCEDURE ... 2-8

2.6.4.1 Procedure subprograms ... 2-8
2.6.4.2 Function subprograms .. 2-8
2.6.4.3 External procedures.. 2-9

2.6.5 Standard functions .. 2-9
2.6.6 PACKAGE ... 2-10
2.6.7 Reserved PACKAGE .. 2-10

2.7 Subprogram Argument Declarations .. 2-12
2.8 Declarations ... 2-13

2.8.1 Type declarations .. 2-14
2.8.2 CONSTANT declarations .. 2-15
2.8.3 PARAMETER declarations ... 2-16
2.8.4 Array declarations ... 2-16
2.8.5 FILE declarations .. 2-17
2.8.6 EXTERNAL declarations .. 2-18
2.8.7 USE declarations .. 2-18
2.8.8 NOSORT declarations .. 2-18

2.9 Modelling Regions .. 2-18
2.9.1 INITIAL region ... 2-19
2.9.2 DYNAMIC region .. 2-19
2.9.3 STEP region .. 2-19
2.9.4 COMMUNICATION region .. 2-19
2.9.5 TERMINAL region ... 2-19
2.9.6 ANALYSIS region ... 2-19
2.9.7 Experiment region ... 2-19
2.9.8 Variable classification ... 2-20

2.9.8.1 Procedural variables ... 2-20
2.9.8.2 Simulation parameters .. 2-20
2.9.8.3 Algebraic variables ... 2-20
2.9.8.4 State variables .. 2-21
2.9.8.5 CONSTANT .. 2-21

2.10 Modelling Code ... 2-22
2.10.1 Differential equations .. 2-22
2.10.2 Transfer functions ... 2-22

 Table of Contents

ESL Simulation Software - ESL Reference Manual iv

2.10.3 Multivariable transfer functions ... 2-24
2.10.4 IF clause ... 2-24
2.10.5 WHEN block .. 2-24
2.10.6 PROCEDURAL block.. 2-25

2.11 Procedural Statements ... 2-26
2.11.1 Assignment statement .. 2-26
2.11.2 Control statements .. 2-27

2.11.2.1 IF statement .. 2-27
2.11.2.2 LOOP statement ... 2-28
2.11.2.3 TERMINATE statement .. 2-29
2.11.2.4 RETURN statement .. 2-29
2.11.2.5 STOP statement ... 2-29
2.11.2.6 Subprogram call statement ... 2-29
2.11.2.7 LINEARIZE statement .. 2-30
2.11.2.8 TRIM statement .. 2-31
2.11.2.9 EIGENVALUE statement .. 2-32
2.11.2.10 OPTIMIZE statement .. 2-32
2.11.2.11 RESUME statement.. 2-33
2.11.2.12 RESTART statement .. 2-33
2.11.2.13 SNAPSHOT statement ... 2-33
2.11.2.14 INTERACT statement ... 2-34

2.11.3 Input - Output statements ... 2-34
2.11.3.1 OPEN statement ... 2-34
2.11.3.2 CREATE statement .. 2-34
2.11.3.3 REWRITE statement .. 2-34
2.11.3.4 CLOSE statement ... 2-35
2.11.3.5 DELETE statement ... 2-35
2.11.3.6 File status ... 2-35
2.11.3.7 PRINT statement .. 2-35
2.11.3.8 PLOT statement .. 2-37
2.11.3.9 TABULATE statement .. 2-38
2.11.3.10 PREPARE statement .. 2-38
2.11.3.11 READ statement ... 2-39
2.11.3.12 READEL statement... 2-40

2.12 Expressions .. 2-41

3 Submodel Library .. 3-1
3.1 ABSX .. 3-1
3.2 AFGEN0 ... 3-1
3.3 AFGEN1 ... 3-1
3.4 AFGEN2 ... 3-2
3.5 BISTBL ... 3-3
3.6 CMPXPL... 3-3
3.7 COMPAR.. 3-4
3.8 COMPB .. 3-4
3.9 COULOMB ... 3-4
3.10 CPXPL .. 3-5
3.11 DEADSP ... 3-5
3.12 DELAY .. 3-5
3.13 DERIV ... 3-6
3.14 FG3D .. 3-6
3.15 FGEN0 .. 3-7
3.16 FGEN1 .. 3-7
3.17 FGEN2 .. 3-8
3.18 FHOLD.. 3-8
3.19 FOURINT .. 3-9
3.20 HSTRSS ... 3-9
3.21 IMPUL ... 3-10
3.22 INTEG ... 3-10
3.23 INTX.. 3-10

 Table of Contents

ESL Simulation Software - ESL Reference Manual v

3.24 LEDLAG ... 3-11
3.25 LIMINT .. 3-11
3.26 LIMIT... 3-11
3.27 LOGINT .. 3-12
3.28 MODULT .. 3-12
3.29 MONO... 3-13
3.30 PICONT .. 3-13
3.31 PIDCONT ... 3-13
3.32 PIDCONT1 ... 3-14
3.33 POLYROOTS ... 3-15
3.34 POLYVAL ... 3-15
3.35 QNTZR ... 3-15
3.36 RAMP ... 3-15
3.37 REALPL .. 3-16
3.38 RECNS0 ... 3-16
3.39 RECNS1 ... 3-16
3.40 RECT .. 3-17
3.41 SAMHLD ... 3-17
3.42 SQRTX ... 3-18
3.43 STEPP .. 3-18
3.44 TIMER... 3-18
3.45 ZHOLD.. 3-19

4 ESL Syntax ... 4-1
4.1 Syntax Summary .. 4-1
4.2 Syntax Keywords ... 4-14

Chapter 1 Introduction

ESL Simulation Software - ESL Reference Manual 1-1

CHAPTER 1

1 Introduction

1.1 Introduction
This document is the Reference Manual for the ESL simulation language and submodel
library. Other ESL documents are: User Guide and Tutorial which provides a step-by-step
introduction to both the graphical interface (ISE) and how to write programs directly in the
ESL language and Development Guide which explains in detail how to use ESL.

The ESL simulation language was originally written to meet the requirements of the European
Space Agency. It is a general purpose Continuous Systems Simulation Language (CSSL),
with a comprehensive supporting software environment, which may be applied in any field
where dynamic systems are to be studied.

The ESL software environment provides users with all the facilities to describe a
mathematical model; execute the simulation and analyse the results. The core of this
environment is the ESL language. It is a comprehensive procedural language extended to
address the requirements of dynamic simulation.

ESL programs are presented in standard text files, which may be prepared using any suitable
text editor. An alternative to the text file definition is to automatically generate error-free ESL
programs using the ISE graphical user interface. Many models can be expressed in the form
of block diagrams and ISE allows such diagrams to be constructed. ISE then applies rigorous
integrity checking to ensure that an error-free program is generated. Users can then execute
the simulation and analyse the results from within the ISE environment.

Therefore there are two completely different user interfaces to the ESL system: the
conventional programming language to specify a simulation; or graphical driven input using
ISE. Users may use either interface, without the need to understand the other, to undertake
complete simulation projects. For some projects a mixture of the two approaches is an ideal
answer. ISE allows textual code to be included alongside block-diagram elements. Both
routes provide an excellent environment for ensuring integrity of a simulation. During
processing, extensive diagnostic checks are made to ensure correct user programs, even to
the extent of checking consistent use of all variables, including state, memory and algebraic
variables.

ESL is recognised as a natural model definition language: the way to unambiguously define a
simulation. The characteristics which help justify this claim are: the submodel concept;
unambiguous model definition code presented in a modern programming style; the clear
definition of non-linearities or discontinuities; full matrix, vector and array slice support;
optional Transfer Function notation; linearization features; steady-state finders and, of great
importance, the strict rules which are vigorously imposed by the ESL compiler.

To support these concepts ESL provides a very practical solution in the form of an Interpreter
for fast turn-round of simulation programs under development with excellent run-time
diagnostics and facilities, and a Translator for efficient production simulation runs. Following a
simulation, comprehensive post-mortem graphical analysis can be performed using ISE
(irrespective of whether the simulation was run in ISE or from the command line).

This manual contains: a formal specification of the ESL language; a list of the submodels
contained in the Submodel Library and a summary of the ESL language syntax.

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-1

CHAPTER 2

2 ESL Language Specification

2.1 Introduction
This chapter presents a formal syntax specification of the ESL simulation language. The
syntax specification is expressed in Modified Backus Naur Form (MBNF), and this is
explained by means of examples and a discussion of the main semantic operations. Readers
are referred to the Development Guide for a detailed discussion of the use of various ESL
statements and constructs.

2.2 MBNF Syntax Convention
The MBNF syntax definition uses special conventions and symbols to express the syntax of
the ESL language. The complete ESL syntax definition consists of a series of statements of
the form:

 syntax element = expression.

where expression comprises lexical elements, syntax elements and meta-symbols.

Lexical elements, or "terminal symbols", (keywords, characters, operators etc..) are presented
between double-quotes, for example: "INTEGER", "+", "1". In particular, keywords appear in upper-
case characters.

Note: This convention is used in the formal definition, but the ESL language is insensitive to the
case of the characters. Therefore the user may type either "INTEGER", or "integer".

Syntax elements define components of the language, and are shown in lower-case e.g.
study_program, variable. The first syntax element of the ESL definition is program.

Meta-symbols:

Optional items are shown between square brackets, e.g. ["+"] denotes an optional operator
token.

Optional repeated items are shown between braces, e.g. {"+" variable} indicates that "+ variable" may
appear any number of times or not at all.

Alternatives:

Where a choice exists, the options are shown separated by a vertical bar, e.g.

 real | integer | character

indicates that one of the three elements may be used.

Factorization:

Parenthesis are used as meta-symbols to group elements, or to factor out the common head
of a set of alternatives, e.g.

 x y | x w | x z

could be expressed as:

 x (y | w | z)

2.3 Lexical Elements
This section describes the basic lexical elements from which all ESL statements are
constructed.

ESL statements may extend over several lines. The "end of line" is treated as a space
character and lexical elements which must not have embedded spaces (e.g. identifiers,

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-2

keywords, numbers etc.), must not be broken by line boundaries. Furthermore no lexical
element may be split across a line boundary, this includes character strings.

2.3.1 Character sets

The following character sets are used in the ESL language.

 upper_case_letter =

 "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |

 "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |

 "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z".

 lower_case_letter =

 "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |

 "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |

 "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z".

 digit =

 "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".

 special_character =

 """" | "(" | ")" | "*" | "+" | "," | "-" | "." | "/" |

 ":" | ";" | "<" | "=" | ">" | "_" | "[" | "]".

 space_character =

 " ".

ESL special_characters are used as delimiter tokens, or in expressions, and must not be
used in variable naming (with the exception of underscore, "_").

Identifiers, such as variable names or reserved words containing lower_case_letters are
interpreted as upper case, i.e. abCD and ABCD are treated as equivalent.

 other_special_character =

 "!" | "'" | "£" | "$" | "%" | "&" | "?" | "@" | "\" |

 "^" | "{" | "|" | "}" | "~".

other_special_characters may be used only in character strings or comments.

2.3.2 Identifiers and variables

The ESL definition of an identifier is:

 identifier =

 letter {letter | digit | "_"}.

 letter =

 upper_case_letter | lower_case_letter.

Variables are defined formally in ESL:

 variable =

 identifier ["(" subscript {"," subscript} ")"].

 subscript =

 expression [".." expression].

 expression [Section: 2.12]

Variable names may be any length up to the maximum line length (132 characters), however
only the first 28 characters are significant. The first character must be a letter; the remainder

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-3

may be letters, digits or the underscore character. Note other_special_characters and the
space_character are not permitted in variable names.

Subscripts are used when the variable is an array, to identify a specific element, or an array
slice. Subscript expressions may be of type integer or real (truncated to integer).

The derivative variable is used to specify a differential equation, and its associated state
variable:

 derivative_identifier =

 identifier "'" { "'" }.

 derivative_variable =

 derivative_identifier

 ["(" subscript {"," subscript} ")"].

2.3.3 Character strings

A literal character string is a sequence of one or more characters enclosed within string
bracket characters. The string bracket character may be included in the string if it appears
twice as adjacent characters. The format is:

 character_string =

 """" character {character} """" |

 "%" character {character} "%".

 character =

 letter | digit | space_character |

 special_character |

 other_special_character.

 letter [Section: 2.3.2]

 digit [Section: 2.3.1]

 space_character [Section: 2.3.1]

 special_character [Section: 2.3.1]

 other_special_character [Section: 2.3.1]

2.3.4 Keywords

ESL features four classes of keywords:

Keywords declaring a program or subprogram;

 Keywords declaring a region;

 Keywords used in statements.

These keywords are not permitted in any other context in an ESL program (e.g. as variables,
model names etc.), except within comments or text strings.

2.3.4.1 Program and subprogram

The following keywords are used for program module declarations:

 MODEL [Section: 2.6.1]

 SUBMODEL [Section: 2.6.2]

 SEGMENT [Section: 2.6.3]

 PROCEDURE [Section: 2.6.4]

 PACKAGE [Section: 2.6.6]

The keywords:

 STUDY

 END_STUDY

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-4

are required at the start and end of a complete ESL program. ESL code which represents an
embedded or remote segment starts with one of the program keywords:

 EMBEDDED

 REMOTE

2.3.4.2 Region keywords

The following keywords should appear with no terminator (";"). Each marks the beginning of a
region, and termination of the previous region.

 INITIAL

 DYNAMIC

 STEP

 COMMUNICATION

 TERMINAL

 ANALYSIS

These keywords may only be used in modelling subprograms, Table 2-1 indicates their
required and permitted use.

Region keywords, when used, must be entered in the above order, i.e. the STEP region, if
present, must be appear before any COMMUNICATION, TERMINAL or ANALYSIS region.

Table 2-1 Sub-program permitted regions

2.3.4.3 Statement keywords

The following keywords are used by ESL in various statement constructs

 AND

 CHARACTER

 CLEAR_SCREEN

 CLOSE

 CONSTANT

 CREATE

 DELETE

 ELSE

 ELSE_IF

 END

 END_IF

 END_LOOP

 END_PROCEDURAL

 END_WHEN

 EXTERNAL

 FALSE

 FILE

 FOR

 INCLUDE

 INTEGER

 INTERACT

 IOSTAT

 LINEARIZE

 LOGICAL

 LOOP

 NOSORT

 NOT

 OPEN

 OR

 PARAMETER

 PLOT

 PREPARE

 PRINT

 PROCEDURAL

 READ

 READEL

 REAL

 RESTART

 RESUME

 RETURN

 REWRITE

 SNAPSHOT

 STOP

 TABULATE

 TERMINATE

 THEN

 TRANSFER

 TRANSFER_MATRIX

 TRIM

 TRUE

 USE

 WHEN

 WHILE

 MODEL SUB-MODEL SEGMENT

INITIAL Optional Optional Optional

DYNAMIC Mandatory Mandatory Mandatory

STEP Optional Optional Optional

COMMUNICATION Optional Optional Optional

TERMINAL Optional Prohibited Prohibited

ANALYSIS Optional Prohibited Prohibited

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-1

2.3.5 ESL numbers

The formal definition of ESL numbers is:

 number=

 real_number | integer.

 real_number =

 integer ("." (integer [exponent] | exponent) | exponent).

 exponent =

 ("E"|"e"|"D"|"d") ["+"|"-"] integer.

 integer =

 digit {digit}.

 digit [Section: 2.3.1]

No spaces may be embedded in numbers. For real numbers the decimal point must not be
the first or last character, and it is always required unless an exponent operator is included.
The E and D exponent characters are treated identically, and indicate the power of ten by
which the number is to be multiplied. The range of an integer is from -2147483648 to
2147483647, and the magnitude of real numbers is approximately 1.17510-38 to 3.4010+38.

2.3.6 ESL delimiters

A number of symbols have special significance in the ESL language. These are: the space " ";
the semi-colon ";"; the assignment symbol ":="; the colon ":"; mathematical operators, e.g. "+";
relational operators, e.g. ">"; the range symbol ".."; brackets "()", "[]", "/"; string bracket
symbols (" or %); and the comment symbol "--". The use of each of these special symbols is
described below.

Space-symbol: A space may not be embedded in any lexical token, e.g. identifier, keyword,
number, character string etc.. An end-of-line is treated as a space, and multiple spaces may
be freely used between lexical tokens to improve the appearance of a program.

Semi-colon: Each ESL statement must be terminated with a semi-colon, the statement may
extend over several lines, e.g.:
 IF X > Y THEN

 A:=X;

 ELSE

 A:=Y;

 END_IF;

The following keywords (which are not ESL statements) require no terminator:
 STUDY

 END_STUDY

 INITIAL

 DYNAMIC

 STEP

 COMMUNICATION

 ANALYSIS

 TERMINAL

The semi-colon is also used to separate different groups of argument type declarations in a
subprogram declaration, e.g.:
 SUBMODEL sub1(real:a,b ; integer:c := real:x,y);

Assignment symbol: The assignment symbol, ":=", has three purposes in ESL. It is used in
assignments, declarations and sub-program calls. In the following it is used to assign the
results of the right-hand side to the left-hand side:
 Y := TRANSFER(1/(S+1)) * X;

 X := 0.0;

 y := A*x + D*u;

 x,y := sub1(a,b);

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-2

In declarations it is used as a delimiter between the output and input arguments of MODELs,
SUBMODELs, and SEGMENTs:
 MODEL mod1(real:x,y := real:a,b);

 SUMODEL submod1(real:x,y := real:a,b);

 SEGMENT seg1(real:x,y := real:a,b);

In subprogram calls it is used to delimit the output and input arguments:

 MODEL calls:
 mod1(x,y := a,b);

 SEGMENT calls:
 seg1(x,y := a,b);

 PROCEDURE (sub-routine) calls:
 sub1(a := b,c);

For declarations and calls, the ESL convention is that output variables are placed before the
":=", and input variables after. If no ":=" token is present, then all arguments are interpreted as
outputs.

Qualifier symbol: The colon symbol ":", qualifies the variables to its right by the preceding
keyword. It is used in the following cases:
 REAL: x,y,z;

 CHARACTER: a,b;

 INTEGER: c,d,e;

 LOGICAL: q;

 FILE: infile,outfile;

Separator Symbol: ESL uses the comma to separate similar variable or expressions within a
statement, e.g.:
 REAL: a, b, c;

 PRINT "Output x = ",X," and y = ",Y;

Operator Symbols: the following symbols are used for arithmetic operations:
 * multiplication

 / division

 - subtraction or unary negation

 + addition

 ** exponent

 ^ vector cross product

 . vector dot product

In arithmetic expressions, all operators must be explicitly included. The ESL compiler will
check for the correct use of operators depending on the variable types used.

Note: In certain cases the explicit multiplication operator may be excluded from the TRANSFER
function statement where parenthesis is used.

The multiplication symbol, "*", is also used in PROCEDURE or SUBMODEL declarations for
implicit dimensioned arrays.

The multiplication symbol, "*", is also used to indicate repeated values for array elements,
e.g.:
 REAL:A(4)[4 * 0.0];

sets all four elements to 0.0.

Relational Operators: the following symbols are used in ESL for relational operations:
 = equality

 /= inequality

 > greater than

 < less than

 >= greater than or equal

 <= less than or equal

Range symbol "..", is used with arrays to explicitly present both lower and upper bounds of a
dimension, e.g.:
 REAL: ARR(1 .. 2, 0 .. 10);

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-3

declares a two dimension array with subscript ranges 1 to 2 and 0 to 10. It is also used to
define array slices, e.g.:
 arr1(2..4, 2..4) := arr2(1..3, 2..4);

The range symbol is also used to indicate the range of a FOR statement, e.g.:
 FOR i := 8 .. 15 LOOP

Bracket Symbols: round, "()", square, "[]" and slash "/" brackets are used.

Round brackets are used in the following cases:
 MODEL mod (real:a:=real:b); subprogram declarations

 a:= b * (d + e); arithmetical expressions

 a:= sin(x) + c; function calls

 a:= sub1(b,c); sub-model calls

 mod1(a:=b); model, segment and procedure calls

 real:AA(10,10), BB(20,20); array declarations

 a:= AA(1,2); array subscripts

 AA(1..3,2..4):=BB(11..13,12..14); array slices

 read (char_var_prompt),a,b;READ statement for character variable prompt

Square brackets are used in the following cases:
 PLOT x,y,[y2],0,tfin,0,10; optional PLOT statement parameters.

 TRIM [TAU] := [TH'']; indicating matrix or vector quantities.

 LINEARIZE AA,BB := [th,th'], [tau]; matrix or vector quantities.

 INTEGER: ARR(2,2) [10,11,20,21]; explicit row-major setting of arrays.

Slash brackets are used in the following cases:
 REAL:a /1.0/, b /1.0/; initialisation of variables

 INTEGER: ARR(2,2) /10,20,11,21/; initialisation of arrays, column-major

String Bracket Symbols: literal character strings are bracketed by either of the following:
 " character string "

 % character string %

The character used to indicate the start of the string must match that at the end. Use of either
of the string bracket symbols within the string is permitted by using the alternative delimiter, or
by presenting the character twice, e.g.:
 """" is a one character string: "

 %"% is a one character string: "

2.4 COMMENTS
Comments in ESL are placed after the double hyphen symbol, "--", and may appear
anywhere on a line. All text to the right of the symbol is treated as a comment, e.g.:
 X := 1.0 -- Set value of X

 -- A comment may occupy a full line,

 -- and continue with any characters including,

 -- a further -- symbol.

LIBRARY comment

The LIBRARY directive is a special comment used only by ISE and ESL-Studio when
processing ESL text submodel, or function procedure, files for inclusion as icons in a block
diagram. It is used to specify any standard library submodel, other submodel, procedure, or
package, which is used by that module. It causes ISE or ESL-Studio to generate INCLUDE
statements to incorporate the required modules.

The syntax for the Library declaration is:

 library_declaration =

 "--" "LIBRARY" file_identifier {"," file_identifier}.

 file_identifier =

 character {character}.

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-4

Note that no terminating ";" is required, and file naming is computer dependent, a space
character not regarded as valid in a filename.

2.5 INCLUDE Directive
The INCLUDE statement is not strictly an ESL statement, but a directive to the ESL compiler
to indicate that the contents of the specified file should be included in a program at this
position.

INCLUDE statements may appear at any point in the program as the only statement on the
line, and are dealt with at the lexical level. Code included by this means is treated exactly as
though it were written in original program. Further INCLUDE statements may be placed in the
included file, that is, include files may be nested.

 include_statement

 "INCLUDE" character_string ["-" ("L"|"l")] ";".

 character_string [Section: 2.3.3]

The character string specifies the file name (which is given the ".esl" extension by default).
The file name must be bracketed by string bracket symbols " or %. The ESL compiler will try
to open the file using the following sequence:

Current directory, with .esl extension if non specified;
Library directory, with .esl extension if non specified;
Current directory, with no extension if non specified.

If the file name incorporates a directory path only that directory will be searched.

Note: File names are case sensitive on some systems, e.g. LINUX, the recommended practice is to
use lower-case file names.

The "-L" or "-l" option causes the included file to be added to any ESL listing file generated by
the compiler, for example, if a "-lst" option is presented on the esl command line.

2.6 Program Structure
Four basic types of ESL program are permitted:

 program =

 study_program | remote_program |

 embedded_program | non_program.

A study_program is the basic stand-alone executable simulation program. It must start with
a STUDY keyword and be terminated with an END_STUDY. If no model or procedural
subprograms are included then the study will contain procedural code only, [Section: 2.11], and by
default the complete program will be the experiment, or experiment region. All subprograms
must be declared prior to this region. The format is:

 study_program =

 "STUDY"

 {program_unit}

 experiment

 "END_STUDY".

 experiment [Section: 2.9.7]

A remote_program is intended for concurrent processing, either on the same or a remote
processor. It must begin with the REMOTE keyword and include one, and only one,
SEGMENT as the last program module:

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-5

remote_program =

 "REMOTE"

 {package_specification |

 procedure_subprogram |

 function_subprogram |

 submodel_subprogram }

 segment_subprogram.

An embedded_program is intended to be called by programs written in FORTRAN. It must
begin with the EMBEDDED keyword and its structure is identical to the remote_program.

 embedded_program =

 "EMBEDDED"

 {package_specification |

 procedure_subprogram |

 function_subprogram |

 submodel_subprogram }

 segment_subprogram.

 package_specification [Section: 2.6.6]

 procedure_subprogram [Section: 2.6.4.1]

 function_subprogram [Section: 2.6.4.2]

 submodel_subprogram [Section: 2.6.2]

 segment_subprogram [Section: 2.6.3]

A non_program may contain any program_unit, except an experiment, but the compiler will
not produce an h-code file ".hcd". It is simply used to check the validity of the program. Note
that the program does not start with a program keyword such as STUDY, i.e.:

 non_program =

 {program_unit}.

Of the seven program_unit types in ESL, five are referred to as subprograms. Note that all
subprograms and packages must be declared before use.

 program_unit =

 package_specification |

 procedure_subprogram |

 function_subprogram |

 model_subprogram |

 submodel_subprogram |

 segment_subprogram |

 external_segment_declaration.

 package_specification [Section: 2.6.6]

 procedure_subprogram [Section: 2.6.4.1]

 function_subprogram [Section: 2.6.4.2]

 model_subprogram [Section: 2.6.1]

 submodel_subprogram [Section: 2.6.2]

 segment_subprogram [Section: 2.6.3]

 external_segment_declaration [Section: 2.6.3]

2.6.1 MODEL

The MODEL subprogram provides the user with the capability to describe the physical
system, and it may only be called from the experiment region. Although any number of
MODEL subprograms may be presented, only one may be active at a time. MODEL
subprograms may be called with any number of arguments between parenthesis, empty
parenthesis or no parenthesis at all. A MODEL must contain at least a DYNAMIC region and
optionally up to one each of the other region types. The declaration of reserved variables is
implicit in a MODEL.

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-6

 model_subprogram =

 "MODEL" identifier argument_specification ";"

 declarations

 model_body

 "END" [identifier] ";".

 model_body =

 ["INITIAL" statements]

 "DYNAMIC" dynamic_region_code

 ["TERMINAL" statements]

 ["ANALYSIS" statements].

 dynamic_region_code =

 {model_statement ";"}

 ["STEP" statements]

 ["COMMUNICATION" statements].

 identifier [Section: 2.3.1]

 argument_specification [Section: 2.7]

 declarations [Section: 2.8]

 model_statement [Section: 2.6.1]

 statements [Section: 2.11]

The MODEL must be terminated by an END statement, with an optional identifier which
should be the MODEL name.

The calling convention (from the experiment region) is to place the arguments in the same
order as the declaration. This is formally described in the call statement:

 subprogram_call [Section: 2.11.2.6]

The actual argument types must match those used in the. Expressions may be used in the
input argument list, and must be the same type as the corresponding declared, or formal,
argument. The use of ":=" to separate output arguments from input arguments is mandatory in
the model call.

2.6.2 SUBMODEL

The SUBMODEL provides the means to represent part of a system separately from the
complexities of the remainder. It is the modelling equivalent of a subroutine or procedure in a
procedural language like FORTRAN or Pascal, or in fact the ESL procedure. A SUBMODEL
may be invoked several times from the DYNAMIC regions of a MODEL, SEGMENT, or other
SUBMODELs. SUBMODELs differ from procedural subprograms in that separate instances of
a given SUBMODEL are active simultaneously, and techniques are incorporated into the ESL
implementation to avoid conflict between the data associated with different calls of the same
SUBMODEL. That is, each invocation of a SUBMODEL has its own "private" data (for
variables declared in the SUBMODEL) associated with the particular invocation.

SUBMODEL subprograms may be called with any number of arguments between
parenthesis, empty parenthesis or no parenthesis at all. A SUBMODEL must contain at least
a DYNAMIC region and optionally an INITIAL, a STEP, and a COMMUNICATION region. It
may not include an ANALYSIS or TERMINAL region. A SUBMODEL structure is similar to
that of a MODEL:

 submodel_subprogram =

 "SUBMODEL" identifier argument_specification ";"

 declarations

 submodel_body

 "END" [identifier] ";".

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-7

 submodel_body =

 ["INITIAL" statements]

 "DYNAMIC" dynamic_region_code.

 identifier [Section: 2.3.1]

 argument_specification [Section: 2.7]

 declarations [Section: 2.8]

 statements [Section: 2.11]

 dynamic_region_code [Section: 2.6.1]

The SUBMODEL must be terminated by an END statement, optionally followed by the
SUBMODEL name. The declaration of reserved variables is implicit.

The formal calling convention requires the use of a "submodel_call_statement", from the
DYNAMIC region of a MODEL, SEGMENT or other SUBMODEL:

 submodel_call_statement =

 output_arguments ":="

 identifier "(" input_arguments ")" ";".

 output_arguments [Section: 2.11.2.6]

 input_arguments [Section: 2.11.2.6]

 identifier [Section: 2.3.1]

Calls to Submodels are formally "model statements".

ESL provides an extensive library of submodels that may be used in applications, before use
the required submodel must be accessed via an INCLUDE declaration [Section: 2.5]. See chapter
3 for a complete list of submodels and their description.

2.6.3 SEGMENT

SEGMENTs provide a means of both emulating and actually running concurrent processes,
and also running embedded ESL simulations. They are similar to a MODEL but they may only
be called from the COMMUNICATION region of a MODEL, which ensures a fixed time period
between each SEGMENT invocation. The declaration of reserved variables is implicit. A
SEGMENT is defined as follows:

 segment_subprogram =

 "SEGMENT" identifier argument_specification ";"

 declarations

 segment_body

 "END" [identifier] ";".

 segment_body =

 ["INITIAL" statements]

 "DYNAMIC" dynamic_region_code.

 statements [Section: 2.11]

 dynamic_region_code [Section: 2.6.1]

A SEGMENT has its own reserved variables, and may use a different integration algorithm
from the model. COMMUNICATION periods (CINT) may be set in the SEGMENT, but they
must be selected to be consistent with the calling rate determined by the model.

Where an external, or remote, SEGMENT is used, it must have a prototype declaration in the
main ESL study. This takes the form:

 external_segment_declaration =

 "SEGMENT" identifier argument_specification

 "EXTERNAL" ";"

 [declarations segment_body]

 "END" [identifier] ";".

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-8

 argument_specification [Section: 2.7]

 identifier [Section: 2.3.1]

The local declarations and the segment body may be included, but they are ignored by the
ESL compiler.

The calling convention for SEGMENTs is the same as that for a MODEL, but they may only
be called from a model's communication region:

 subprogram_call [Section: 2.11.2.6]

2.6.4 PROCEDURE

Two types of procedural subprograms are defined in ESL, the function_subprogram and the
procedure_subprogram, they are similar to FORTRAN functions and subroutines. In addition,
external FORTRAN or C routines may be called.

Procedural subprograms contain procedural code, not modelling code. The scope of ESL
reserved variables is not extended to procedures, and if they are required they must be
declared with a USE RESERVED statement.

2.6.4.1 Procedure subprograms

The format for a procedure_subprogram is:

 procedure_subprogram =

 "PROCEDURE" identifier

 ["("[argument_list]")"]";"

 procedure_specification

 "END"[identifier]";".

 procedure_specification =

 declarations

 statements.

 identifier [Section: 2.3.1]

 parameter_list [Section: 2.7]

 declarations [Section: 2.8]

 statements [Section: 2.11]

No distinction is made in the declaration between input and output arguments, the ":=" symbol
is not permitted here. Note that the argument list, and "()" symbols may be omitted.

Procedures may be called from any procedural code region of the ESL program, this excludes
direct calls from the DYNAMIC region of modelling subprograms:

 subprogram_call [Section: 2.6.1]

The call is identical in structure to the MODEL and SEGMENT, the ":=" symbol being used to
distinguish between output and input arguments, but the ESL compiler does not check
whether the procedure uses the formal arguments as implied by the ":=" symbol.

2.6.4.2 Function subprograms

The format of a function-subprogram is:

 function_subprogram =

 "PROCEDURE" identifier

 "("[argument_list]")" "RETURN" type ";"

 procedure_specification

 "RETURN" expression ";"

 "END"[identifier]";".

 identifier [Section: 2.3.1]

 parameter_list [Section: 2.7]

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-9

 type [Section: 2.7]

 procedure_specification [Section: 2.6.4.1]

The RETURN statement must be placed at the end of the procedure; however, additional
RETURNs may be placed elsewhere in the procedure-specification in which case the first
encountered will provide the return value to the calling routine.

Function_subprograms are called from expressions [Section: 2.12] in procedural or modelling
Code, and may return a single value, or an array result, of the RETURN type.

 function_call =

 identifier "(" expression {"," expression} ")".

 identifier [Section: 2.3.1]

 expression [Section: 2.12]

2.6.4.3 External procedures

FORTRAN and C functions may be used by ESL programs when using the Translator option.
Such functions must be declared with an EXTERNAL declaration statement [Section: 2.8.6] inside
the calling subprogram. Once declared, such functions are called in the same way as ESL
declared procedures and function procedures.

2.6.5 Standard functions

The following standard functions are part of the ESL language and are implicitly declared:

 SIN sine of argument (radians)

 ASIN arc-sine of argument

 COS cosine of argument (radians)

 ACOS arc-cosine of argument

 ATAN arc-tangent of argument

 ATAN2 arc-tangent of two arguments

 LOG & ALOG natural logarithm of argument

 EXP exponential of argument

 ABS absolute value of argument

 SQRT square root of argument

 RAND pseudo-random number

 INT integer value of argument

 LEN returns total number of array elements

 LEN_1 number of elements in first dimension of array

 LEN_2 number of elements in second dimension of array

 LEN_3 number of elements in third dimension of array

 ACHAR character value corresponding to ASCII code

 IACHAR ASCII code corresponding to character value argument

 INV inverse of square matrix

 DET determinant of square matrix

 TRNSP transpose of a matrix

 SUB_STRING returns position in first character string argument where second character string argument is encountered as a

sub-string.

The ATAN2 function is an alternative form of ATAN which takes two arguments, and is
equivalent to ATAN (arg1/arg2). The result is expressed in radians in the range -π < result <=
π, whilst ATAN gives a result in the range -π/2 <= result <= π/2.

The LEN functions work on all array types, including character arrays and strings.

SUB_STRING returns a zero if the second character string argument is not located in the first
sub-string argument (identical to FORTRAN INDEX).

RAND(X) produces a uniformly distributed real pseudo-random number in the range 0.0 to
ABS(X), where X is a real. A negative or zero value for X re-seeds the number generator to
start at the first number in the 4294967296 sequence. The formula used is:

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-10

𝑅𝐴𝑁𝐷(𝑋) =
𝑆𝑋

𝑀

where 𝑆 = (𝑆𝑂𝐵 + 𝐶)mod(𝑀)

 SO is the last seed,

 B=69069,

 C=1,

 M=232

The INV function inverts a real or integer square matrices and returns a real square matrix

The DET function calculates the determinant of a real or integer square matrices and returns
a real scalar result.

The TRNSP function transposes a two-dimension real, integer, logical or character matrix,
and returns a matrix of the same type.

A singular matrix will cause the DET and INV functions to give a run time error.

Note: Care should be taken in using ASIN and ACOS as they are not defined for arguments outside
the range ±1.0. The ATAN function does not have such restrictions.

2.6.6 PACKAGE

Packages provide a means of grouping data under one heading and making that data
available to subprograms and the experiment. They are similar to FORTRAN named common
blocks. The format of a PACKAGE definition is:

 package_specification =

 "PACKAGE" identifier";"

 declarations

 "END" [identifier]";".

Declarations may include any of:

 EXTERNAL [Section: 2.8.6]

 REAL,INTEGER,CHARACTER,LOGICAL,FILE [Section: 2.8.5]

 CONSTANTS [Section: 2.8.2]

 PARAMETER [Section: 2.8.3]

and they may also include initialisation of the variables. A subprogram may access the
variables in a PACKAGE by the USE statement [Section: 2.8.7]. The PACKAGE itself, however,
may not reference other packages.

Note: NOTE: Access to PACKAGE variables is restricted to the subprograms with a USE
declaration. It is not automatically passed to any other subprograms.

All variables declared in a PACKAGE are given the procedural variable classification [Section:
2.9.8.1].

Example PACKAGE declaration

The package structure also provides access to ESL program data from non-ESL routines.

2.6.7 Reserved PACKAGE

ESL features a number of reserved variables as part of the language. An implicit USE
RESERVED is assumed in the experiment and all modelling subprograms (MODEL,

PACKAGE pack1;

 EXTERNAL optim;

 EXTERNAL REAL:func23;

 CONSTANT REAL:pi/3.142/;

 CONSTANT CHARACTER:logo(3)/"ESL"/;

 INTEGER:i,j,k,l;

END pack1;

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-11

SUBMODEL and SEGMENT). If access is required from a procedural subprogram (procedure
or function) then an explicit USE RESERVED is required.

Many of the Reserved PACKAGE variables are important control variables for the study, and
their initial values may be set. There are also reserved variables for system purposes, and
these may not be set by the user, i.e. they are treated as constants. The reserved PACKAGE
variables which are for user purposes are shown in Table 2-2

Table 2-2 Reserved Package variables

Table notes:

1. ALGO may be set to the following values:

 1 or RK5 5th order variable step

 2 or RK4 4th order fixed step

 3 or RK2 2nd order fixed step

 4 or STIFF2 2nd order stiff integration

 5 or GEAR1 Gear's variable step stiff integration

 6 or GEAR2 Gear's method, diagonal Jacobian

 7 or ADAMS Adams predictor-corrector

 8 or RK1 Euler 1st order method

 21 or LIN1 Linearization routine [Section: 2.9.6]

 22 or LIN2 Linearization routine [Section: 2.9.6]

2. DIS_ST is valid in the STEP region and indicates the reason why the step region has
been invoked:

 0 ordinary end of step

 1 communication point

 2 immediately before discontinuity

 3 immediately after discontinuity

Name Initial

value

Type User

setting

Description

T 0.0 real yes independent variable

(normally time)

TSTART 0.0 real yes initial value of T at start of

run

TFIN 10.0 real yes final value of T at end of run

CINT 1.0 real yes communication interval

DISERR 0.0001 real yes discontinuity detection error

tolerance

INTERR 0.001 real yes integration error tolerance

ALGO 1 int. yes integration algorithm

NSTEP 1 int. yes minimum number of

integration steps in CINT

DIS_ST N/A int. no indication of STEP region

call

IEX_CM

etc.

 no system use

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-12

2.7 Subprogram Argument Declarations
The normal method of passing data between ESL subprograms is by an argument list. The
optional argument_specification in a subprogram declaration is specified as:

 argument_specification =

 ["(" [output_argument_list]

 [":=" input_argument_list] ")"].

 output_argument_list =

 argument_list.

 input_argument_list =

 input_argument_declaration

 { "," input_argument_declaration}.

 input_argument_declaration =

 ["CONSTANT"] variable_type_declaration | file_declaration.

 argument_list =

 argument_declaration

 { ";" argument_declaration}.

 input_argument_declaration [Section: 2.7]

 argument_declaration [Section: 2.7]

 variable_type_declaration [Section: 2.3.2]

 file_declaration [Section: 2.8.5]

Input arguments may include a CONSTANT specification which allows the ESL compiler the
possibility of producing more efficient code. For example, the CONSTANT argument only
needs to be passed to a submodel for the initial call as it is assumed to remain constant
throughout a simulation run.

 argument_declaration =

 variable_type_declaration | file_declaration.

 variable_type_declaration =

 type ":"

 variable_declaration

 {"," variable_declaration}.

 variable_declaration =

 identifier ["("(dimension_bounds|"*")

 {","(dimension_bounds|"*")}")"].

 type =

 "REAL"|"INTEGER"|"LOGICAL"|"CHARACTER".

 file_declaration [Section: 2.8.5]

 file_specifier [Section: 2.8.5]

 dimension_bounds [Section: 2.8.4]

 identifier [Section: 2.3.1]

integer [Section: 2.8.1]

Where an array is specified in the formal argument declaration of a PROCEDURE or
SUBMODEL, the symbol "*" may be used in place of explicit dimension bounds. For a
MODEL or SEGMENT the actual dimension information is required.

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-13

In SUBMODEL and PROCEDURE declarations the array upper dimension bounds are
ignored, they are calculated from the dimension lengths of the actual array argument, that is
the dimension lengths are inherited from the declaration in the calling subprogram.

Note: NOTE: If the lower dimension bound is not unity, users are advised to always use implicit "*"
dimension specifications for submodels and procedures (not models or segments).

ESL provides flexibility in allowing differences between actual and formal array arguments in
the case of SUBMODEL and PROCEDURE calls. The number of dimensions need not match,
provided no attempt is made in the called subprogram to access array elements that do not
exist. This is illustrated by:

 Actual Formal Comment

 Argument Argument

 A(2,3) F(*) assumes F(1..2)

 F(*,*) assumes F(1..2,1..3)

 F(*,*,*) assumes F(1..2,1..3,1..1)

In the first case, only elements of the first dimension of the actual argument are accessible,
and in the last case the third dimension is assumed to have a length of unity. Subscripting
and Slicing in the called routine must conform to the number of dimensions given in that
subprogram's array declaration.

Note: MODEL and SEGMENT declarations cannot use implicit dimension bounds, and their actual
and formal array arguments must have identical dimension lengths. This is because of the
special nature of the interface between procedural code and modelling subprograms.

2.8 Declarations
The declaration statements follow the declaration of each subprogram, or package. All
variables used in a subprogram must be declared, and the declarations may include initial
values.

Declarations are permitted in the experiment region, the PACKAGE block, the declaration
region of MODELs, SUBMODELs, SEGMENTs and PROCEDUREs. Declarations must
appear before any executable statements, and are also required in subprogram argument
lists; see MODEL, [Section: 2.6.1]; SUBMODEL, [Section 2.6.2]; SEGMENT, [Section: 2.6.3]; PROCEDURE
[Section: 2.6.4].

Note: Procedural subprograms initialise their variables once only, prior to execution. In contrast,
simulation subprograms initialise their variables at the start of every simulation run, (unless
explicitly directed not to by a RESUME, [Section: 2.11.2.11], or RESTART, [Section: 2.11.2.12],
statement).

The following declaration classes are defined:

 declarations =

 { (external_declaration

 | file_declaration

 | constant_declaration

 | parameter_declaration

 | type_declaration

 | use_declaration

 | nosort_declaration) }.

 type_declaration =

 type ":" declaration_variable

 [("/" | "[") aggregate ("/" | "]")]

 {"," declaration_variable

 [("/" | "[") aggregate ("/" | "]")]}.

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-14

 declaration_variable =

 identifier

 ["(" dimension_bounds {"," dimension_bounds} ")"].

 dimension_bounds =

 ["-"] integer [".." ["-"] integer].

 aggregate =

 aggregate_element {"," aggregate_element }.

 aggregate_element =

 {(identifier | integer) "*"}

 (identifier | ["+"|"-"] (integer | real_number) |

 "FALSE" | "TRUE" | character_string).

 external_declaration [Section: 2.8.6]

 file_declaration [Section: 2.8.5]

 constant_declaration [Section: 2.8.2]

 parameter_declaration [Section: 2.8.3]

 use_declaration [Section: 2.8.7]

 nosort_declaration [Section: 2.8.8]

 type [Section: 2.7]

 identifier [Section: 2.3.1]

 dimension_bounds [Section: 2.8.4]

 integer [Section: 2.8.1]

 real_number [Section: 2.8.1]

 character_string [Section: 2.8.1]

2.8.1 Type declarations

Optional REAL initialisation demands that no spaces may be embedded in numbers, the
decimal point must not be the first or last character, but must be included unless an exponent
operator is present. The number may be signed.

Examples of REAL declarations

Optional INTEGER initialisation again does not allow spaces or any other characters, and
may be signed.

INTEGER declaration examples

Optional LOGICAL initialisation requires the words FALSE or TRUE, abbreviations are not
permitted. Examples of LOGICAL declarations are as follows:

REAL: x,y,z; -- declaration, no values

REAL: a1[1.0],a2/1.0E5/,a3/1E-5/; -- declarations, values set

REAL: arr1(4,3,2); -- 3 dimensional array, no values

REAL: arr2(2,2,2)/8*0.0/; -- 3 dimensional array, all values 0.0

REAL: arr3(3,3)[1.0,1.1,1.2,

 2.0,2.1,2.2,

 3.0,3.1,3.2]; -- 2 dimensional array, values set

INTEGER: zz,yy; -- declaration only

INTEGER: ww/2/,q1/565/; -- declaration and values set

INTEGER: arr21(2,3); -- array declaration

INTEGER: arr31(2,3)/1,2,3,4,5,6/; -- array declaration, values set

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-15

LOGICAL declarations

Optional CHARACTER initialisation requires literal character string(s) to be presented. Note
variables are defined as either as a string variable or an arrays of characters.

String variables:

a single character variable;
a one dimensional character string array;

Array of characters:

a two or three dimensional character array.

CHARACTER declarations

If character strings or arrays are assigned initial values in the declaration, then the values
must exactly match the array length. For two or three dimension arrays the square brackets,
"[]", indicate that the character values are stored in the normal row-major order, whilst the "/"
delimiters indicate column-major order. In the example both ZR and ZC are initialised to the
same values.

See the Development Guide, chapter 6, for details on the character handling features
provided by ESL.

2.8.2 CONSTANT declarations

Any of the variable type declarations can also be declared as a CONSTANT:

 constant_declaration =

 "CONSTANT" type ":" declaration_variable

 ("/" | "[") aggregate ("/" | "]")

 {"," declaration_variable

 ("/" | "[") aggregate ("/" | "]")} ";".

 declaration_variable [Section: 2.8]

 aggregate [Section: 2.8]

The values for CONSTANT variables MUST be included with the declaration.

CONSTANT declarations

LOGICAL: log1, log2;

LOGICAL: log3/TRUE/;

LOGICAL: log4/FALSE/;

CHARACTER: A,B(6); -- character string variables

CHARACTER: A/"a"/; -- character string

CHARACTER: C(2,3); -- arrays of characters

CHARACTER: ZR(2,3)["abc","def"];

CHARACTER: ZC(2,3)/"ad","be","cf"/;

CONSTANT REAL: R1/1.5/;

CONSTANT INTEGER: I1/3/,I2/4/;

CONSTANT LOGICAL: GOOD/TRUE/,BAD/FALSE/;

CONSTANT CHARACTER: logo(3)/"ESL"/;

CONSTANT CHARACTER: product(2,10)["Simulation","Language "];

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-16

2.8.3 PARAMETER declarations

A PARAMETER is semantically the same as a CONSTANT, and must be given a value in the
declaration. However, alternative values of PARAMETERs may be set by a "simulation driver
file", when ESL is run, which will overwrite the value set in the ESL program (ESL
Development Guide chapter 11).

 parameter_declaration =

 "PARAMETER" type ":" declaration_variable

 ("/" | "[") aggregate ("/" | "]")

 {"," declaration_variable

 ("/" | "[") aggregate ("/" | "]")}.

 declaration_variable [Section: 2.8]

 aggregate [Section: 2.8]

2.8.4 Array declarations

ESL arrays are limited to a maximum of three dimensions. Two dimension array declarations
follow normal conventions by declaring the number of rows, and then the number of columns.

 REAL: array_name(row_range, column_range);

Three dimension arrays require the "planes" to be specified first, then the rows and columns.

Any of the variable types may be declared as arrays by including parenthesis enclosing
dimension bounds for each dimension, there are no special declaration statements keywords
for arrays. Array initialisation is optional, however, all array elements must be set if
initialisation is used.

Repeated initial values may be set to successive array elements by using the "*" operator.
This may be combined with individual settings, e.g.:

 REAL:Arr1(4, 0..3) [1.0, 14*0.0, 1.0];

will set all array elements to 0.0 except the first and last.

The lower-bound of an array dimension is assumed to be 1 unless it is explicitly given another
value (which could be zero or negative). The upper-bound must be greater than, or equal to,
the lower-bound.

ARRAY declarations

INTEGER array declarations

REAL: r1(5)/5*0.0/; -- 5 element, 1 dimension array of

 -- reals all set to 0.0, subscripts

 -- (1 to 5).

REAL: r2(5,5); -- 25 element, 2 dimension array of

 -- reals, not initialised, subscripts

 -- (1 to 5, 1 to 5.

INTEGER: Array0(0..3,4,-2..4) [140*0];

 -- 140 element (4*5*7) 3 dimension

 -- array, each element value zero,

 -- subscripts (0 to 3, 1 to 4,-2 to 4)

INTEGER: Array1(0..3,5,-2..4);

INTEGER: IARR1(3,4,5); -- 60 element, 3 dimensional array of

 -- integers, subscripts:

 -- (1 to 3, 1 to 4, 1 to 5)

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-17

CHARACTER array examples

LOGICAL array declarations

A three-element column, or row, array may be treated as a special vector, and have certain
vector operations performed on it, [Section: 2.12].

Vector Array declarations

Two alternative formats for initialisation are provided for matrices; the "//" delimiters imply the
initialisation data is presented column by column (column-major) order:

 REAL: A(3,4)/a11, a21, a31,

 a12, a22, a32,

 a13, a23, a33,

 a14, a24, a34/;

The alternative format allows a more natural row by row (row-major) order:

 REAL: A(3,4)[a11, a12, a13, a14,

 a21, a22, a23, a24,

 a31, a32, a33, a34];

Users are advised to use row-major conventions to be compatible with ESL PRINT and READ
statements ordering of array output.

2.8.5 FILE declarations

ESL allows the transfer to and from data files, of any of the data types defined. File specifiers
are used to connect input/output operations, such as PRINT, READ, or TABULATE, with
physical files. Once declared, the file-specifier may be connected and disconnected by means
of the various file handling commands (CREATE [Section: 2.11.3.2], OPEN [Section: 2.11.3.1], REWRITE
[Section: 2.11.3.3], CLOSE [Section: 2.11.3.4] and DELETE [Section: 2.11.3.5]). File-specifiers may be passed
between subprograms in the same way as other types, and they may also be declared in
PACKAGEs.

Note: TABULATE and PREPARE also allow file names to be explicitly presented within the
statement.

File specifier syntax is:

 file_declaration =

 "FILE" ":" file_specifier {"," file_specifier} ";".

CHARACTER:specials(5,10); -- array of 5 words of 10 characters

 -- each, not initialised, subscripts

 -- (1 to 5, 1 to 10)

LOGICAL:log1(2,2,2)/TRUE,TRUE,

 TRUE,TRUE,

 TRUE,TRUE,

 TRUE,TRUE,

 TRUE,TRUE/;

REAL: vect1(3); -- 3 element column vector

REAL: vect2(3,1); -- 3 element column vector

REAL: vect3(1,3); -- 3 element row vector

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-18

 file_specifier =

 identifier.

 identifier [Section: 2.3.1]

A file-specifier which is not connected to a specific file will direct any input or output to the
user terminal.

2.8.6 EXTERNAL declarations

ESL may call external subroutines or functions written in FORTRAN or C. These externals
must appear in an EXTERNAL declaration:

 external_declaration =

 "EXTERNAL" [type ":"] identifier

 {"," identifier} ";".

 type [Section: 2.7]

 identifier [Section: 2.3.1]

Where the identifier is a name of an external procedure or function. This feature may only be
used with the Translator option, it is ignored by the Interpreter.

2.8.7 USE declarations

Before the data in a PACKAGE can be accessed by a subprogram, it must be made known to
that subprogram by the USE declaration. This specifies that all variables, constants, file
specifiers and externals declared in the named PACKAGE are available to the subprogram.
The syntax for the USE declaration is:

 use_declaration =

 "USE" identifier {"," identifier} ";".

 identifier [Section: 2.3.1]

where the identifier is the name given to a declared PACKAGE.

The predefined package, RESERVED, containing the reserved variables (T, TSTART, ALGO
etc.), is implicitly declared in all model subprograms and the experiment. It is not however
implicitly available in procedural subprograms, and its use requires the declaration:

 USE RESERVED;

Note: Separate sets of reserved variables exist for a MODEL, and each SEGMENT. When
SEGMENTS are not "remote" they inherit initial values of reserved variables from the calling
MODEL, these values then may be individually set by each SEGMENT. Remote and
embedded SEGMENTS initially have the default values for reserved variables.

2.8.8 NOSORT declarations

The NOSORT declaration is only effective in MODEL, SUBMODEL and SEGMENT program
modules where it inhibits the DYNAMIC region statement sorting mechanism. This is
sometimes necessary where the user defined order of statement execution is to be strictly
adhered to, e.g., for reasons of numerical accuracy. Only a single NOSORT declaration is
needed within the declaration region of the program module.

 nosort_declaration =

 "NOSORT" ";".

2.9 Modelling Regions
The MODEL, SEGMENT and SUBMODEL are the modelling programs which are divided into
a number of regions.

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-19

2.9.1 INITIAL region

The INITIAL region is optional in MODEL, SUBMODEL and SEGMENT subprograms and
must appear before the DYNAMIC region. The INITIAL region is executed once at the start of
a simulation run only, that is, once for each call of the MODEL from the experiment region. It
may be used to set simulation reserved variables such as TSTART, TFIN, ALGO etc., instead
of allowing the experiment to perform this function. For segments it is strongly advised that
reserved variables which control the run are set here. The INITIAL region may contain
procedural statements only [Section: 2.11].

2.9.2 DYNAMIC region

The DYNAMIC region is mandatory in a MODEL, SUBMODEL and SEGMENT subprogram,
and must precede any STEP, COMMUNICATION or TERMINAL regions. It must contain non-
procedural, modelling code, only [Section: 2.10] which describes mathematically the dynamics of
the physical system being modelled.

2.9.3 STEP region

The STEP region is optional in each of the modelling subprograms, and if used must be used
immediately after the DYNAMIC region, that is, before any COMMUNICATION region. It
contains procedural code only [Section: 2.11]. Statements in the STEP region are executed at the
end of every successful integration step, this includes points immediately before and after a
discontinuity. Execution of the STEP region is determined by the number of discontinuities
and the integration algorithm. For fixed-step algorithms the reserved variables CINT and
NSTEP [Section: 2.6.7], determine the basic step-size (CINT/NSTEP), and hence the basic
frequency of the STEP region execution. For variable-step algorithms the maximum step-size
is the same, but the algorithm may well use a smaller steps to satisfy error criteria. The
variable DIS_ST [Section: 2.6.7] indicates the reason for the STEP region execution.

2.9.4 COMMUNICATION region

The COMMUNICATION region is optional in each of the modelling subprograms, and if used
must appear immediately after the DYNAMIC and any STEP region. It contains procedural
code only [Section: 2.11], and is executed at precise communication intervals as set by CINT
[Section: 2.6.7]. Calls to SEGMENTS [Section: 2.6.3] may only be made from the MODEL
COMMUNICATION region.

2.9.5 TERMINAL region

The TERMINAL region may only appear in a MODEL, before any ANALYSIS region (if one
exists), or as the last region of the model. It is executed once only at the end of the simulation
run. It contains procedural code which is executed prior to returning to the experiment code
which called the model.

2.9.6 ANALYSIS region

The ANALYSIS region may only appear in a MODEL subprogram, as the last region of the
model. It contains procedural code [Section: 2.11], and is used to perform steady-state and
linearization functions. It may contain only one TRIM [Section: 2.11.2.8] and only one LINEARIZE
[Section: 2.11.2.7] statement, but other procedural statements may be freely used. The
ANALYSIS region is invoked by setting the reserved variable ALGO [Section: 2.6.7] to LIN1 or
LIN2 either in the INITIAL region, or the experiment prior to the MODEL call.

2.9.7 Experiment region

The experiment region is mandatory in a study_program, and is the final region of the
program. No keyword is used to indicate the start of the experiment, and the region contains
procedural code [Section: 2.11]. This region is the only one from which a MODEL may be called,
and is designed to perform an experiment on the model. A SEGMENT cannot be called from

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-20

the experiment (it must be called from a model COMMUNICATION region), but other
procedure_subprograms may be freely called. Reserved variables are implicitly declared in an
experiment.

 experiment =

 declarations

 statements.

 declarations [Section: 2.8]

 statements [Section: 2.11]

2.9.8 Variable classification

ESL assigns to each variable a classification which determines the usage of that variable.
When arguments are passed between modelling subprograms, ESL checks not only the
variable type, but also the classification to ensure that variable usage is consistent.

Model variables are:

 memory Variables

 algebraic variables

and are those variable types that are declared in, and are local to MODELs, SUBMODELs
and SEGMENTs.

Memory variables are further classified as:

 simulation parameters

 state variables

and are those variables whose value depends on previous rather than current conditions
within the simulation.

2.9.8.1 Procedural variables

These variables are used for basic computational purposes rather than modelling. They are
declared and set either in the experiment region, a procedure_subprogram or in a PACKAGE.
Procedural variables declared in a PACKAGE may be accessed in a subprogram through a
USE statement. They may be freely used with the single exception that they not be set in
modelling statements in a DYNAMIC region.

2.9.8.2 Simulation parameters

Simulation parameters are declared in a modelling subprogram, and are given a value (at
declaration or in the INITIAL region), and then only changed in special circumstances. As far
as the integration is concerned they remain constant throughout each step. They may be
modified in procedural regions (e.g. STEP, COMMUNICATION, or in the bodies of WHEN
blocks). when changed, e.g. in a WHEN body, the integration will then "see" a new constant
value for the simulation parameter. Simulation parameters may inherit the classification from
a submodel, by appearing as an output argument in the submodel call where the formal
argument is classified as a simulation parameter.

2.9.8.3 Algebraic variables

Algebraic variables (classed as model variables) are declared in model subprograms and may
only be set at one point in the DYNAMIC region. They may not be set in any procedural
region other than as an output of a PROCEDURAL block. Derivatives of state variables are
algebraic variables. It is necessary to ensure that algebraic variables are set before they are
used, ESL automatically sorts the DYNAMIC region statements to ensure this is condition is
satisfied. Algebraic variables may inherit the classification from a submodel, by appearing as
an output argument in the submodel call where the formal argument is classified as algebraic.

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-21

Example of Algebraic Variables

2.9.8.4 State variables

State variables, which are classed as memory variables, occur where differential equations
are specified. The state variable is declared in a modelling subprogram and must be given an
initial value at its declaration or in the INITIAL region. A variable becomes a state when it
appears in a "prime" notation modelling statement in a DYNAMIC region. In the example
below;

X is declared and initialised as a state variable, and X' is an algebraic variable
because it is set in the DYNAMIC region;

Y is declared and initialised as a state variable, but because a double derivative is
required, Y'' is the algebraic variable (because it is set in the DYNAMIC region), and
Y' is another state variable which must also be initialised.

Use of State Variables

State variables may inherit the classification from a submodel, by appearing as an output
argument in the submodel call where the formal argument is classified as a state.

2.9.8.5 CONSTANT

There are two classes of constant, those explicitly declared as such and those variables
which assume the constant status locally inside a subprogram. Explicit constants are declared
by prefixing the type with the keyword:

 CONSTANT REAL:

 CONSTANT INTEGER:

 CONSTANT LOGICAL:

 CONSTANT CHARACTER:

and must be given their value with the declaration, [Section: 2.8.2]. Once declared constants
cannot be changed.

SUBMODEL boxarea(real:area,rateout:=real:len,bredth);

real:rate;

INITIAL

rate:=0.0;

DYNAMIC

area:=len*bredth;

rate':=area;

rateout:=rate';

END boxarea;

-- area, rate’and rateout are an Algebraic variables

MODEL example(:=real:error);

real:X,Y;

INITIAL

X:=0.0;

Y:=0.0;

Y':=0.0;

DYNAMIC

X':= -X+sin(error);

Y'':= -2*Y'-Y;

END example;

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-22

Variables (of any type or classification) passed as inputs to a modelling subprogram are also
treated as constants within that subprogram. Attempts to modify the value within the
subprogram will cause an error.

Examples of constant types

It is also possible to explicitly declare a modelling subprogram input_argument as a
CONSTANT which is interpreted as meaning that argument remains constant throughout a
simulation run. ESL exploits this information to produce more efficient code.

2.10 Modelling Code
Model statements define the dynamics of the system and appear in the DYNAMIC regions of
MODEL's, SUBMODEL's and SEGMENT's.

 model_statement =

 model_variable_statement |

 submodel_call_statement |

 procedural_model_block |

 when_statement.

 model_variable_statement =

 model_variable ":="

 expression | if_clause | transfer_expression | transfer_matrix_expression.

 model_variable =

 identifier | derivative_identifier.

 submodel_call_statement [Section: 2.6.2]

 procedural_model_block [Section: 2.10.6]

 when_statement [Section: 2.10.5]

 expression [Section: 2.12]

 if_clause [Section: 2.10.3]

 transfer_expression [Section: 2.10.2]

 identifier [Section: 2.3.1]

 derivative_identifier [Section: 2.10.1]

2.10.1 Differential equations

Differential equations may be presented in ESL in derivative form e.g.:
 x'':= -k*x'-x+1.0;

In this example x'' will be classified as algebraic and x and x' as state variables.

Alternatively, differential equations may appear in integral form (using the INTEG submodel)
or by specifying the corresponding transfer functions.

2.10.2 Transfer functions

In an ESL transfer function statement, the transfer expression has the form:

SUBMODEL circarea(real:area:=real:radius);

CONSTANT REAL:pi/3.14159/;

DYNAMIC

area:=pi*radius**2;

end circarea;

-- pi declared as CONSTANT

-- radius treated as local constant

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-23

 transfer_expression =

 "TRANSFER" "(" ([gain]

 transfer_factor {transfer_factor} | gain)

 "/"([pole] transfer_factor {transfer_factor} | pole)

 {"," initial_expression} ")" "*" input_expression ";".

 gain =

 [unary_operator] coefficient.

 coefficient =

 ["-"|"+"] identifier | number.

 transfer_factor =

 "(" [unary_operator] transfer_term

 {adding_operator transfer_term } ")".

 transfer_term =

 coefficient ["*" pole] | pole.

 pole =

 ("S" | "s") ["**" integer].

 initial_expression =

 expression.

 input_expression =

 expression.

 unary_operator [Section: 2.12]

 expression [Section: 2.12]

 identifier [Section: 2.3.1]

 number [Section: 2.8.1]

The initial_expression refers to initial conditions of the state variables and is optional, and if
omitted values of 0.0 will be assumed. The input_expression is mandatory.

Multiplication is implied between bracketed transfer factors; the transfer function gain and any
following factor, and between the origin pole (if present) and following factors (see examples).
The S operator must appear after the coefficient in the transfer term. There is no limit to the
number of factors present in the numerator or denominator, nor in the order of the Laplacian
operator S, except that the order of S in the numerator must be equal to, or less than, the
order of S in the denominator.

Transfer Function ESL Representation

−𝐾

𝑠
 -K/s

10.0

𝑠2
 10.0/s**2

(𝑠 + 𝑎)

(2𝑠 + 𝑏)
 (s + a)/(2*s + b)

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-24

𝑔𝑎𝑖𝑛(2𝑠2 + 0.5𝑠 + 6)

𝑠(𝑠 + 𝑎)(𝑏𝑠2 + 𝑐𝑠 + 𝑑)

gain(2*s**2 + 0.5*s + 6)/

s(s + a)(b*s**2 + c*s + d)

(1 + 0.1𝑠)(1 + 0.2𝑠)

𝑠2(𝑠 + 𝑎)(𝑏𝑠2 + 𝑐𝑠 + 𝑑)

(1 + 0.1*s)(1 + 0.2*s)/

s**2(s + a)(b*s**2 + c*s + d)

Examples of ESL transfer function notation

2.10.3 Multivariable transfer functions

In an ESL multivariable transfer function statement, the transfer matrix expression has the
form:

 transfer_matrix_expression =

 "TRANSFER_MATRIX" "(" denominator

 " [" matrix_row { “;” matrix_row } "]" ")" "*" input_expression ";".

 denominator =

 ([pole] transfer_factor { transfer_factor } | pole).

 matrix_row =

 numerator { "," numerator }.

 numerator =

 (([gain ["*" zero] | zero]) transfer_factor { transfer_factor } | (gain ["*" zero] | zero)).

 zero =

 ("S" | "s") ["**" integer].

2.10.4 IF clause

An IF-clause allows alternative expression values to be assigned to a model variable
dependent on the value(s) of logical "control" expression(s). A discontinuity occurs when the
control expression changes state.

 if_clause =

 "IF" logic_expression "THEN" expression

 {"ELSE_IF" logic_expression "THEN" expression}

 "ELSE" expression.

 logic_expression [Section: 2.10.3]

 expression [Section: 2.12]

The if_clause is allowed only in DYNAMIC regions of a MODEL, SUBMODEL or SEGMENT.
The logical_expression corresponding to the first IF, or ELSE_IF, that is true will cause the
corresponding expression to be assigned to the model variable. If no logical_expression is
true, the ELSE expression is assigned.

2.10.5 WHEN block

The WHEN statement may only be used in the DYNAMIC regions of MODELs, SUBMODELs
or SEGMENTs. Its function is to detect events, and when they occur to execute the body of
the WHEN, that is procedural statements bracketed by WHENs and END_WHEN. The logical
expression, or "trigger condition" is monitored, and when, and only when, the condition
becomes true will the WHEN body be executed.

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-25

 when_statement =

 "WHEN" logic_expression "THEN"

 statements

 {"WHEN" logic_expression "THEN"

 statements}

 "END_WHEN".

 logic_expression =

 expression.

 expression [Section: 2.12]

 statements [Section: 2.11]

Example WHEN statement

2.10.6 PROCEDURAL block

PROCEDURAL blocks allow procedural_code to be placed in the DYNAMIC region of
MODEL's, SUBMODEL's or SEGMENT's.

 procedural_model_block =

 "PROCEDURAL" ["(" [output_list]

 [":=" input_list] ")"]";"

 statements

 "END_PROCEDURAL" ";".

 output_list =

 identifier {"," identifier}.

 input_list =

 model_variable {"," model_variable}.

 identifier [Section: 2.3.1]

 statements [Section: 2.11]

 model_variable [Section: 2.10]

The output_list and input_list enable ESL to sort the block within the DYNAMIC region, as a
single statement, to ensure it is executed at a point where its input_list variables have values.
Such blocks should only be used where absolutely necessary (e.g. to set individual elements
of an array), because code within the blocks is not subject the rigorous modelling checks. It is
essential that the output and input lists correctly reflect the use of the block.

 WHEN X>XMAX THEN

 MAX:=TRUE;

 N:=N+1;

 WHEN X<=XMAX THEN

 MAX:=FALSE;

 M:=M+1;

 END_WHEN;

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-26

2.11 Procedural Statements
Procedural statements are permitted in any region of any subprogram except the DYNAMIC
region, unless included inside a PROCEDURAL block or a WHEN statement.

 statements =

 {procedural_statement}.

 procedural_statement =

 procedural_assignment_statement

 | if_statement [Section: 2.11.2.1]

 | loop_statement [Section: 2.11.2.2]

 | terminate_statement [Section: 2.11.2.3]

 | return_statement [Section: 2.11.2.4]

 | stop_statement [Section: 2.11.2.5]

 | subprogram_call [Section: 2.11.2.6]

 | open_statement [Section: 2.11.3.1]

 | create_statement [Section: 2.11.3.2]

 | rewrite_statement [Section: 2.11.3.3]

 | close_statement [Section: 2.11.3.4]

 | delete_statement [Section: 2.11.3.5]

 | print_statement [Section: 2.11.3.7]

 | read_statement [Section: 2.11.3.11]

 | readel_statement [Section: 2.11.3.12]

 | prepare_statement [Section: 2.11.3.10]

 | tabulate_statement [Section: 2.11.3.9]

 | plot_statement [Section: 2.11.3.8]

 | clear_screen_statement [Section: 2.11.3.8]

 | interact_statement [Section: 2.11.2.14]

 | trim_statement [Section: 2.11.2.8]

 | linearize_statement [Section: 2.11.2.7]

 | eigenvalue_statement [Section: 2.11.2.9]

 | optimize_statement [Section: 2.11.2.10]

 | resume_statement [Section: 2.11.2.11]

 | restart_statement [Section: 2.11.2.12]

 | snapshot_statement. [Section: 2.11.2.13]

 procedural_assignment_statement [Section: 2.11.1]

2.11.1 Assignment statement

An assignment statement replaces the current value of a variable with a new value specified
by an expression. The syntax is:

 procedural_assignment_statement =

 variable | derivative_identifier | derivative_variable

 ":=" expression.

 variable [Section: 2.3.2]

 primed_identifier [Section: 2.10.1]

 derivative_variable [Section: 2.10.1]

 expression [Section: 2.12]

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-27

Table 2-3 indicates which type expressions (RHS) may be assigned to the variable (LHS) for
all but the trivial same type case.

Table 2-3 Valid assignment types

Arrays of all types may be the subject of an assignment, character assignments may perform
space filling or truncation, see [Section: 2.8.1].

2.11.2 Control statements

The following controlling statements may only appear in procedural code regions, and may
change the sequence of operations of ESL programs.

2.11.2.1 IF statement

An IF statement determines the choice of execution based on the truth of logical expressions.

 if_statement =

 "IF" logic_expression "THEN"

 statements

 {"ELSE_IF" logic_expression "THEN"

 statements}

 ["ELSE"

 statements]

 "END_IF" ";".

 expression [Section: 2.12]

 statements [Section: 2.11]

IF statements may be nested.

Variable Expression Valid comments

real integer yes

real logical yes true=1.0 false=0.0

real character no

integer real yes truncated

integer logical no

integer character no

logical real no

logical integer no

logical character no

character real no

character integer no

character logical no

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-28

Example IF statement

2.11.2.2 LOOP statement

A LOOP statement specifies that a sequence of statements in a basic loop is to be executed
repeatedly, zero or a number of times. Execution of the loop is terminated when either the
iteration specification of the loop is exhausted, or due to a TERMINATE statement within the
loop. Syntax for a LOOP is:

 loop_statement =

 [iteration_specification] basic_loop.

 iteration_specification =

 ("FOR" identifier ":=" expression ".." expression

 ["STEP" expression]) |

 ("WHILE" logic_expression).

 basic_loop =

 "LOOP"

 statements

 "END_LOOP" ";".

 expression [Section: 2.12]

 identifier [Section: 2.3.1]

 statements [Section: 2.11]

The identifier and expressions for the FOR and STEP parts must be matching real or integer
types. The LOOP can be used in three distinct ways:

1. With no conditional "iteration_specification", using a TERMINATE or INTERACT to
break out.

2. With a FOR "iteration_specification", to control the number of times the loop is
executed.

3. With a WHILE "iteration_specification", which tests whether to undertake the next
pass of the loop, or exit.

Use of STEP with the FOR statement is optional, and if omitted, the variable identified will be
increment (or decrement) by one for each iteration.

IF value1 >= value2 THEN

 IF logic1 THEN

 count:=count+1;

 END_IF;

ELSE_IF value1 < value2 OR value1 <= 0.0 THEN

 count:=0;

 logic1:=FALSE;

ELSE

 logic1:=FALSE;

END_IF;

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-29

Examples of LOOP statement

2.11.2.3 TERMINATE statement

The TERMINATE statement causes the explicit termination of either a LOOP, or the
simulation run, depending on its position. The syntax is:

 terminate_statement =

 "TERMINATE" logic_expression ";".

 logic_expression [Section: 2.10.5]

Termination occurs when executed with the logical condition of true.

2.11.2.4 RETURN statement

A RETURN statement is mandatory as the last statement in a function_subprogram, [Section:

2.6.4.2], returning the value defined in the accompanying expression. Additional RETURN
statements may be included. RETURNs are optional in a procedure_subprogram, the END
causes a return [Section: 2.6.4.1]. The syntax is:

 return_statement =

 "RETURN" [expression] ";".

 expression [Section: 2.12]

The expression may be any type, including an array, e.g.:

 RETURN X>=Y;

 RETURN INV(ARRAY);

2.11.2.5 STOP statement

A STOP statement may be located in any procedural code and causes an immediate
termination of an ESL study.

 stop_statement =

 "STOP" ";".

2.11.2.6 Subprogram call statement

A call statement enables procedures, or procedure functions, (internal or external) to be
invoked from procedural code, a MODEL to be invoked from the experiment, or a SEGMENT
to be invoked from the COMMUNICATION region of the model.

LOOP

 X:=X+1;

 PRINT "current value of X is ",X;

 TERMINATE X>10;

END_LOOP;

FOR ANGLE:= 0.0 .. PI/2.0 STEP 0.1

LOOP

 ARCLENGTH:=RADIUS*ANGLE;

 AREA:=0.5*(RADIUS**2)*ANGLE;

 PRINT ANGLE,ARCLENGTH,AREA;

END_LOOP;

WHILE CURRENT<=10.0 LOOP

 PROCESSOR (CURRENT,VOLTAGE);

 PRINT CURRENT,VOLTAGE;

END_LOOP;

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-30

 subprogram_call =

 identifier["("output_arguments

 [":="input_arguments]")"]";".

 output_arguments =

 variable | derivative_variable

 {"," variable | derivative_variable}.

 input_arguments =

 expression {"," expression}.

 expression [Section: 2.12]

 identifier [Section: 2.3.1]

Actual arguments in a call, and corresponding formal (dummy) arguments in the declaration
of a subprogram must agree with respect to type, and in the case of arrays, the dimensions
must be consistent, see [Section: 2.8.4] for further details.

Declarations of procedural subprograms do not distinguish between input and output
arguments, but in the call the symbol ":=" must be used to separate the output from input
arguments. ESL does not check that the procedure uses the arguments as specified, e.g. as
outputs or inputs. It is the users responsibility to ensure that the procedure definition is
consistent with the call, and that actual output arguments are variables (not expressions)
which may be set.

2.11.2.7 LINEARIZE statement

One LINEARIZE statement only may be included in the ANALYSIS region of a MODEL. It is
used to compute the matrices for the state-space form of a linearized model at steady-state
conditions. The ANALYSIS region is invoked by calling a model with the reserved variable
ALGO set to LIN1 or LIN2 (see next section).

 linearize_statement =

 "LINEARIZE" a_matrix "," b_matrix ":="

 "[" state_vector "]" "," "[" input_vector "]"

 [c_matrix "," d_matrix ":=" "[" output_vector "]"] ";".

 state_vector =

 (identifier | derivative_identifier)

 {","(identifier | derivative_identifier) }.

 input_vector =

 identifier {","identifier}.

 output_vector =

 identifier {","identifier}.

 a_matrix =

 identifier.

 b_matrix =

 identifier.

 c_matrix =

 identifier.

 d_matrix =

 identifier.

 identifier [Section: 2.3.1]

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-31

The c_matrix and d_matrix and output_vector are only required if both state and output
equations are needed. Each of the vector identifiers may represent any number of scalar
variables, one dimensional arrays or a mixture of these. The arrays for the state-space
matrices must have been previously declared and have correct dimensions.

Linearization example

2.11.2.8 TRIM statement

One TRIM statement only may be included in the ANALYSIS region of a MODEL. This
employs one of two minimisation algorithms to determine the steady-state of a model. The
statement form is:

 trim_statement =

 "TRIM" "[" control_vector "]" ":="

 "[" derivative_vector "]" ";".

 control_vector =

 (identifier | derivative_identifier)

 {"," (identifier | derivative_identifier) }.

 derivative_vector =

 (identifier | derivative_identifier)

 {"," (identifier | derivative_identifier) }.

 identifier [Section: 2.3.1]

For any steady-state condition, known state and/or input variables are supplied to the
algorithm, which then determines the values of the other supplied variables to achieve the
steady-state condition. The ANALYSIS region is invoked, and options selected, by calling a
model with the reserved variable ALGO set as follows:

 LIN1 Newton-Raphson algorithm

 LIN2 Simplex algorithm

The control_vector variables may be "state" or "simulation parameter" and for the
derivative_vector, "algebraic", [Section: 2.9.8].

State space form:

 x' = A*x + B*u

 y = C*x + D*u

where

 x is the state vector

 u is the input vector

 y is the output vector

 A,B,C,D are the state matrices

ESL format:

 LINEARIZE A,B:=[x,z,Brr],[Urr,u1,u2]

 C,D:=[y1,y2];

where x,z,u1,u2,y1 and y2 are scalars and Brr and Urr are arrays.

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-32

2.11.2.9 EIGENVALUE statement

The EIGENVALUE statement is a general procedural code statement to determine the
eigenvalues of any real square matrix. An n x n matrix A has an eigenvector x and
corresponding eigenvalue λ if:

𝑨𝑥 = 𝜆𝒙

It follows that the eigenvalues are the n roots of the characteristic equation:

det|𝑨 − 𝜆𝑰| = 0

The EIGENVALUE statement has the form:

 eigenvalue_statement =

 "EIGENVALUE" eigenvalue_array ":="

 system_matrix ";".

 eigenvalue_array =

 identifier.

 system_matrix =

 identifier.

The following example illustrates the calculation of eigenvalues.

 EIGENVALUE L := A;

where:

 A is the real n x n matrix whose eigenvalues are to be determined;
 L is a real n x 2 array to hold the eigenvalues.

On return from the statement, L(1..n, 1) will contain the real parts of the eigenvalues, and
L(1..n, 2) will contain the imaginary parts (if the eigenvalues are complex).

2.11.2.10 OPTIMIZE statement

The OPTIMIZE statement uses the Simplex algorithm to optimize a system expressed as an
ESL model or procedure. The output argument of the module is the "performance function" to
be minimised, and the input arguments are the parameters to be determined. The form of the
statement is:

 optimize_statement =

 "OPTIMIZE" identifier "(" variable ":="

 variable {variable} ")" ";".

An example OPTIMIZE statement is:

 OPTIMIZE subprog_name(cost := par1, par2, ...);

where:

 subprog_name is the name of the ESL model or procedure to be optimized;

 cost is the performance function output, to be minimised;

 par1, par2,... are the input parameters.

The OPTIMIZE argument list must match exactly that of the subprogram definition and all the
arguments must be of type real. Further, the input parameters must be variables, not
expressions, and be given initial values before the optimization call. For example:

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-33

 STUDY

 MODEL CONTROLLER(REAL: cost := REAL: g1, g2, g3);

 END CONTROLLER;

 -- EXPERIMENT

 REAL: perform, gain1, gain2, gain3;

 gain1 := 0.1; gain2 := 0.1; gain3 := 0.2;

 OPTIMIZE CONTROLLER(perform := gain1, gain2, gain3);

 PRINT "performance function", perform;

 PRINT "optimum gains", gain1, gain2, gain3;

 END_STUDY

2.11.2.11 RESUME statement

A RESUME statement may only be used in the experiment region to call a MODEL. The
format is:

 resume_statement =

 "RESUME" subprogram_call ";".

 subprogram_call [Section: 2.11.2.6]

A RESUME statement will invoke the MODEL to continue the previous simulation run from
the conditions which prevailed when the model last completed a simulation. It will bypass the
INITIAL region, using the results at the end of the previous simulation for its initial conditions.
It can be used only if there has been a previous call to the model, and TFIN normally needs
increasing to allow the simulation to proceed

2.11.2.12 RESTART statement

A RESTART statement is used from the experiment region only to call a MODEL. The format is:

 restart_statement =

 "RESTART" subprogram_call ";".

 subprogram_call [Section: 2.11.2.6]

A RESTART statement will invoke the MODEL to restart a simulation from the conditions
which prevailed when the model last completed a simulation. It will bypass the INITIAL region,
using the results at the end of the previous simulation for its initial conditions. It can be used
only if there has been a previous call to the MODEL, and is similar to a RESUME, but resets
the T variable to TSTART and forces a new run for PREPARE statement files.

2.11.2.13 SNAPSHOT statement

A SNAPSHOT statement may appear within procedural code to produce a complete copy of
the simulation in a "snapshot" file (default extension ".snp") so that the simulation may be
restarted from that state in the future. The statement would normally appear in a model
communication region, or the experiment following the model call. It is only effective in cases
where a single model call (possibly within a LOOP) is made from the experiment. The format
is:

 snapshot_statement =

 "SNAPSHOT" [file_name] ";".

 file_name [Section: 2.8.5]

If the file_name is omitted, the user will be prompted at run-time. A snapshot file may also be
taken during the INTERACT service.

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-34

2.11.2.14 INTERACT statement

An INTERACT statement may be used within procedural code to pass control to the user at a
pre-determined point when running a simulation. It provides the user with the ability to
monitor, or set variables, and to control the program execution. The format is:

 interact_statement =

 "INTERACT" ";".

The INTERACT service is also invoked by the user pressing the "break" keys, and in the
event of most run-time errors.

2.11.3 Input - Output statements

All statements dealing with input and output in ESL are procedural code. The file_name to be
connected to a file-specifier ([Section: 2.8.5]) by an OPEN, CREATE or REWRITE statement
may be represented as a literal string (between quotes), a blank string (between quotes) or a
one dimensional character array or expression. If a blank string is used, the program will
prompt the user for a file name at run-time. Note that if a "file_status" option is used the
program must be prepared to deal with error condition, otherwise ESL will attempt to resolve
problems by interaction with the user, or by giving an error message and halting.

2.11.3.1 OPEN statement

The OPEN statement connects a file-specifier to an existing file for reading:

 open_statement =

 "OPEN" file_specifier "," file_name

 ["," file_status] ";".

 file_name =

 character_expression.

 expression [Section: 2.12]

 file_specifier [Section: 2.8.5]

 file_status [Section: 2.11.3.6]

 identifier [Section: 2.3.1]

2.11.3.2 CREATE statement

The CREATE statement will create a new file with the name specified and connect it to a file-
specifier. If a file of the name specified already exists, an error condition occurs. The format
is:

 create_statement =

 "CREATE" file_specifier "," file_name

 ["," file_status] ";".

 file_specifier [Section: 2.8.5]

 file_name [Section: 2.11.3.1]

 file_status [Section: 2.11.3.6]

2.11.3.3 REWRITE statement

The REWRITE statement will create a new or overwrite an existing file of the name specified
and connect it to a file-specifier. The format is:

 rewrite_statement =

 "REWRITE" file_specifier "," file_name

 ["," file_status] ";".

 file_specifier [Section: 2.8.5]

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-35

 file_name [Section: 2.11.3.1]

 file_status [Section: 2.11.3.6]

2.11.3.4 CLOSE statement

The CLOSE statement will close the file connected to the designated file-specifier, and make
that specifier available for other use. The format is:

 close_statement =

 "CLOSE" file_specifier ";".

 file_specifier [Section: 2.8.5]

On normal termination from an ESL program, all files are automatically closed.

2.11.3.5 DELETE statement

The DELETE statement will close and delete a file which is not connected to a file specifier.
The format is:

 delete_statement =

 "DELETE" file_name ["," file_status] ";".

2.11.3.6 File status

This is an optional parameter that may be appended to an OPEN, CREATE, REWRITE,
DELETE or READ statement. Any errors encountered in executing the command are returned
in the integer variable indicated in the statement. The format is:

 file_status =

 "IOSTAT" "=" integer_identifier.

 identifier [Section: 2.3.1]

The possible return values are given in Table 2-4.

If the IOSTAT statement is not included, any errors encountered will cause the program to
interact with the user to resolve the problem, or to halt with an appropriate error message.

2.11.3.7 PRINT statement

The PRINT statement allows text, values of variables or expressions to be printed on the
terminal or output to a file. For output to a file a file-specifier must be connected to the file for
output (by CREATE or REWRITE). The format is:

 print_statement =

 "PRINT" [(file_specifier | print_element)

 {"," print_element }] ";".

 print_element =

 expression [":" print_format_control]

 | "/" {"/"}

 | "-/".

 print_format_control =

 ["-"] integer ["." integer].

 file_specifier [Section: 2.8.5]

 expression [Section: 2.12]

 integer [Section: 2.8.1]

The output list expressions may be of type real, integer, logical or character and may be any
array type or slice. Arrays are printed in row-major order and any format control apply to all
elements in the array.

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-36

The output stream may extend over the maximum line length and further lines are output until
the stream is exhausted. If the line is split then logical and numerical values are adjusted to fit
on the same line, whereas character strings may be split.

Table 2-4 IOSTAT Errors

By default the PRINT statement will output data in the following format:

REAL values: FORTRAN G13.5 (field width 13, 5 significant digits);

INTEGER values: FORTRAN I9,4X (field width 9, followed by 4 spaces);

LOGICAL values: 13 spaces (centred).

To override the default format, the value to be output is followed by a colon and then a whole
number and possibly a decimal part. That is. :m.n (e.g. :12.5). This is interpreted as:

REAL values: if :m.n n =/ 0 then (FORTRAN Fm.n) - field width m, with n decimal places;

 else if :m.0 or :m then

 if m > 8 then FORTRAN Gm.(m-8)

 else_if m = 8 then FORTRAN G8.1

 else_if m < 8 then FORTRAN G13.5 (the default format).

INTEGER values: m (FORTRAN Im) - field width m, right justified.

LOGICAL values: m - field width, right justified.

CHARACTER: are not influenced by format control.

Note that a negative format specifier (e.g. :-m.n1 or :-m) suppresses all spaces in output.

The maximum field width, (m), is restricted to 24 characters.

Note: NOTE: Formatting real values requires a field width large enough for: possible negative sign;
leading zero; decimal point; n significant figures; and four positions for a possible exponent,
which may left blank.

The PRINT statement may also include line control characters:

 / forces a new line

 -/ suspends a new line, next print will append

Return value Status

 0 Operation was performed without error.

 1 Eol was encountered when a data value was expected.

A data value terminated by Eol does not cause the

IOSTAT variable to be set to Eol.

 2 End-of-file was encountered.

 3 Error occurred converting input data to internal form -

e.g. illegal number format.

 4 Failure to open file.

 5 Create file failure - file already exists?

 6 Failure to delete file.

 7 Failure to create file.

 8 Maximum file channels in use (>20).

 9 Too many direct access files (installation error).

 10 File inaccessible - illegal name, already open?

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-37

Table 2-5 PRINT default output

2.11.3.8 PLOT statement

The PLOT statement outputs specified data to the screen in the form of a graph. The first
execution draws the graph axis, and remaining executions plot each of the specified variables
or expressions. Repeated simulation runs from the experiment suppress the graph axis
plotting allowing multiple runs to be shown. If the PLOT statement is placed in the STEP or
COMMUNICATION regions, or in a subprogram called from these regions, each plotted point
is joined to the previous point by a line. If placed in other procedural code regions, symbols
are plotted at the data points.

The format of the PLOT statement is as follows:

 plot_statement =

 "PLOT" [plot_title ","]

 independent_variable ","

 dependent_variable

 ("," [more_depend_var] | more_depend_var)

 x_min "," x_max ","

 y_min "," y_max ";".

 independent_variable =

 model_variable | expression.

 more_depend_var =

 "[" dependent_variable

 { "," dependent_variable } "]" [","].

 dependent_variable =

 model_variable | expression.

 x_min =

 expression.

 x_max =

 expression.

 y_min =

 expression.

 y_max =

 expression.

Type Format Example

 real G13.5

field width 13 and

5 significant digits

▼▼202.45▼▼▼▼

▼▼0.12345e-10

▼-0.31415e 01

 integer I9,4X

right justified field width

9 followed by 4 spaces

▼▼▼▼▼▼▼▼3▼▼▼▼

▼▼▼▼▼▼▼32▼▼▼▼

▼▼▼▼▼▼321▼▼▼▼

 logical centred in field width of

13 characters

▼▼▼▼FALSE▼▼▼▼

▼▼▼▼▼TRUE▼▼▼▼

 character lower case AbCde becomes

abcde

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-38

 plot_title [Section: 2.11.3.8]

 model_variable [Section: 2.10]

 expression [Section: 2.12]

 character_string [Section: 2.8.1]

Multiple PLOT statements are permitted but only one may be active. In order to allow
previous plots to be removed, a CLEAR_SCREEN statement is provided:

 clear_screen_statement =

 "CLEAR_SCREEN" ";".

The next PLOT executed will become active.

2.11.3.9 TABULATE statement

The TABULATE statement will output specified data in a tabular format, either to the terminal
or a file. If a file name is specified it is presented as a character string, variable or expression.
If no extension is given, ".tab" will be appended, and if it is a blank character string, then the
name of the program file (the .esl file) is used but with a .tab extension. Any existing file of the
same name will be overwritten. The format is:

 tabulate_statement =

 "TABULATE" [file_specifier |

 file_name ","]

 output_value {"," output_value} ";".

 output_value =

 model_variable | expression.

 file_specifier [Section: 2.8.5]

 file_name [Section: 2.11.3.1]

 model_variable [Section: 2.10]

 expression [Section: 2.12]

TABULATE output may include any numerical or logical expressions. If a file_name is
specified, any existing file of that name will be overwritten. A TABULATE statement placed in
the STEP or COMMUNICATION regions will produce a heading at the start of each simulation
run. If the TABULATE statement is not invoked during a simulation run, then each time it is
executed the heading line will be output prior to each data output. If the INTERACT option is
used to repeat the run, the previously stored data will be overwritten.

A facility is provided in the convertDisplayFile program to convert between TABULATE and
PREPARE file formats.

2.11.3.10 PREPARE statement

The PREPARE statement saves the values of specified variables in a non-text format for use
by ISE or the convertDisplayFile program. The file name may be specified as a character
string, variable or expression. If no extension is given, ".dsp" will be appended, and if it is a
blank character string, then the name of the program filename (the .esl file) is used but with a
.dsp extension. Any existing file of the same name will be overwritten. The format is:

 prepare_statement =

 "PREPARE" file_name ","

 [plot_title ","]

 [plot_subtitle ","]

 output_value "," [value_title ","]

 {output_value "," [value_title ","]} ";".

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-39

 plot_title =

 character_expression.

 plot_subtitle =

 character_expression.

 value_title =

 character_expression.

 output_value [Section: 2.11.3.8]

 file_name [Section: 2.11.3.1]

 character_string [Section: 2.8.1]

The output values may be any numerical or logical expressions or arrays. The plot_title,
plot_subtitle and value_title may be character strings, character variables (one dimensional
character arrays) or character expressions of length up to eighty characters for the plot titles,
and twenty characters for the value titles. A PREPARE statement in the STEP or
COMMUNICATION regions causes data for each run to be stored in the named file. These
data sets may be accessed by ISE or the convertDisplayFile program. If the INTERACT
option is used to repeat the run, the previously stored data will be overwritten. If the
PREPARE statement is not invoked during a simulation run, then each time it is executed
further data is added to the prepare file to form a single data set.

2.11.3.11 READ statement

The READ statement is used to input data, either from a file or the terminal. If a file_specifier
is present, it must have been previously connected to an existing file by an OPEN statement.
The format is:

 read_statement =

 "READ" [(file_specifier | prompt | read_element)

 {"," read_element}

 ["," file_status] | file_status] ";".

 prompt =

 character_string | "(" expression ")".

 read_element =

 variable [":" read_format_control].

 read_format_control =

 ["-"] integer ["." integer].

 file_status [Section: 2.11.3.6]

 file_specifier [Section: 2.8.5]

 character_string [Section: 2.8.1]

 expression [Section: 2.12]

 variable [Section: 2.3.2]

 integer [Section: 2.8.1]

If no file_specifier, and no prompt, are given the READ statement will take input from the
terminal, and prompt the user with the names of the specified read_elements. If the input
requirements are not met, ESL will prompt the user for the outstanding data.

Unless otherwise specified ESL will use free-format for input. With free format each data item
may be preceded by spaces, and must be terminated with a space, comma, equal sign or eol
(end-of-line). In particular:

Character strings may be presented without sting quotes (" or %) provided they do
not contain embedded spaces. On input the ESL variable will be space filled or
truncated as necessary, with no case conversion.

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-40

Logical input is treated as a character string, which must match one of the following:

 True False

 true false

 tru fals

 tr fal

 t fa

 yes f

 ye no

 y n

 1 0

Valid integers may be preceded by an optional plus or minus, immediately followed
by the integer value. No embedded spaces are allowed. Any decimal point will cause
the rejection of the value.

Valid reals may be preceded by an optional plus or minus. They may be entered as
integers, or may start, or end, with a decimal point, and may also include an
exponent, e.g. -4.12e-5.

Formatting of inputs is provided by following the variable name with a colon, a whole number
with an optional decimal part, i.e. :m.n (e.g. :12.1) or :m (e.g. :8).

For the whole part m:

An m of zero (i.e. 0.0 or 0.1) is the default situation and free format input applies.

A positive m determines a fixed field of that width, e.g. var:4.0 means var is to be in a
field of 4 characters.

A negative m (i.e. :-1, :-1.0 or :-1.1) means free format but only that line is to be
analyzed, the reading of a subsequent line is not permitted to satisfy the current list
item.

The decimal part n applies to character string input only and indicates conversion to upper
case, as:

 m.0 means no conversion of case (the default);

 m.1 conversion to upper-case.

For fixed field format, leading and trailing spaces are ignored for numerical and logical values,
and a field which comprises entirely of spaces is considered to give a data value of zero or
false for logical items. Furthermore if a valid number, which is properly delimited, is
encountered before the end of the field, the remainder of the field is ignored.

For character string variables read in fixed format the m input characters are assigned to the
string variable with truncation or space extension if the length of the variable string is different
from n. Note that spaces, commas, and equals characters are permitted in these fixed format
strings.

If an eol (end-of-line) is encountered during fixed format reading when a new data field is
expected an error condition exists, and if present the IOSTAT variable will be set to indicate
the eol. If the IOSTAT variable is not present the program continues without reporting an
error. Any remaining input list items will be given their default values, i.e. zero for numbers,
space for characters, and false for logical.

If the start of a fixed format field exists, but there are less than n characters before an eol is
encountered, the input field is considered to be extended by spaces until it is "n" characters
long. This case is not considered an error and the IOSTAT variable is not set to indicate eol.

2.11.3.12 READEL statement

The READEL statement will read one variable element at a time from the input buffer which
must have been previously filled with a READ statement.

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-41

 readel_statement =

1. "READEL" [read_element {"," read_element}

1.1.1.1.1. ["," file_status] | file_status] ";".

 read_element [Section: 2.11.3.11]

 file_status [Section: 2.11.3.6]

2.12 Expressions
Expressions are specified in many syntactic definitions, the ESL expression is similar to that
found in other languages such as FORTRAN.

 expression =

 logical_term {"OR" logical_term}.

 logical_term =

 logical_factor {"AND" logical_factor}.

 logical_factor =

 ["NOT"] logical_primary.

 logical_primary =

 simple_expression

 [relational_operator simple_expression].

 simple_expression =

 [unary_operator] term {adding_operator term}.

 term =

 factor {multiplying_operator factor}.

 factor =

 primary {exponentiating_operator primary}.

 primary =

 "(" expression ")" |

 function_call |

 variable |

 derivative_identifier | derivative_variable

 number |

 character_string |

 "FALSE" |

 "TRUE".

 relational_operator =

 "=" | "/=" | "<" | "<=" | ">" | ">=".

 adding_operator =

 "+" | "-".

 unary_operator =

 "+" | "-".

 multiplying_operator =

 "*" | "/" | dot_product | cross_product.

Chapter 2 ESL Language Specification

ESL Simulation Software - ESL Reference Manual 2-42

 exponentiating_operator =

 "**".

 dot_product =

 ".".

 cross_product =

 "^".

 variable [Section: 2.3.2]

 derivative_identifier [Section: 2.3.2]

 derivative_variable [Section: 2.3.2]

 number [Section: 2.8.1]

 character_string [Section: 2.8.1]

The following groups are defined in decreasing order of precedence in Table 2-6.

Table 2-6 Operator precedence

For operators at the same precedence level, evaluation is left to right with the sole exception
of:

 A**B**C

which is treated as:

 A**(B**C)

() parenthesis

. ^ vector operators

** exponentiating operator

* / multiplication and division operators

+ - unary plus and minus

+ - addition and subtraction operators

= /= < <= > >= relational operators

NOT unary logical operator

AND logical operator

OR logical operator

Chapter 3 Submodel Library

ESL Simulation Software - ESL Reference Manual 3-1

CHAPTER 3

3 Submodel Library
This chapter contains an alphabetic list of submodels and procedures available in the ESL

library. The declaration and comment specifying each module are presented. The text of this

chapter was generated automatically by extracting text directly from the library files.

3.1 ABSX
SUBMODEL ABSX(REAL:y := REAL:x);

-- Outputs an absolute value of a real input. This is a

-- submodel version of the standard function ABS which treats a

-- change in sign of the input as a discontinuity.

-- The calling sequence is:

--

-- y:= ABSX(x)

--

-- where:

-- x is the input variable;

-- y is given a value such that:

--

-- y = x, if x >= 0.0,

-- y = -x, if x < 0.0.

--

-- The output is an algebraic variable.

3.2 AFGEN0
SUBMODEL AFGEN0(REAL:y := INTEGER:N; REAL:TABLE(2,*),x);

-- Searches a table of x-y coordinate values (ascending x order)

-- and returns a zero order interpolation corresponding to input

-- x. That is the y-table-value corresponding to the largest

-- x-table-value which is less than or equal to x. If x is less

-- than the first x-table-value then the first y-table-value is

-- returned. The calling sequence is:

--

-- y:= AFGEN0(N,TABLE,x)

--

-- where:

--

-- N is the number of elements in the array;

-- TABLE is the table of values which represents a two row

-- n column matrix:

-- row 1 represents the input values, which

-- must be in ascending order,

-- row 2 represents the corresponding function values;

--

-- x is the input value;

-- y is returned value.

-- The output is a memory variable.

3.3 AFGEN1
SUBMODEL AFGEN1(REAL:y := INTEGER:N; REAL:TABLE(2,*),x);

-- Searches a table of x-y coordinate values and finds

-- which values span the input value of x and performs a

-- first order interpolation to obtain a value for y. The

-- calling sequence is:

Chapter 3 Submodel Library

ESL Simulation Software - ESL Reference Manual 3-2

--

-- y:= AFGEN1(N,TABLE,x)

--

-- where,

--

-- N is the number of elements in the array,

-- TABLE is the table of values which represents a two row

-- n column matrix;

-- row 1 represents the input values, and which

-- must be in ascending order,

-- row 2 represents the corresponding function values

-- x is the input value,

--

-- y is calculated by use of the equation,

--

-- y = ycl+(x-xcl)*grad

--

-- where grad = (ycu-ycl)/(xcu-xcl), and

--

-- ycu - TABLE(2,i) array upper segment value,

-- ycl - TABLE(2,i-1) array lower segment value,

-- xcu - TABLE(1,i) array upper segment value,

-- xcl - TABLE(1,i-1) array lower segment value.

--

-- The output is an algebraic variable.

3.4 AFGEN2
SUBMODEL AFGEN2(REAL:y := INTEGER:N ;REAL:TABLE(2,*),x);

-- Searches a table of x-y coordinate values and finds

-- which values span the input of x and performs a second

-- order interpolation to obtain a value for y.

-- Over any segment, a number of simple polynomial fits

-- is found and the interpolated function, y, is a

-- weighted average over two of these; the weighting

-- being a function of the independent variable.

-- The weighting function has a zero slope at the points

-- where the interpolating polynomials switch over. In

-- the range TABLE(1,i) to TABLE(1,i+1), two quadratics

-- are used; Qn fits TABLE(2,i-1), TABLE(2,i) and

-- TABLE(2,i+1) and Q1n fits TABLE(2,i),

-- TABLE(2,i+1) and TABLE(2,i+2). Qn and Q1n overlap in the

-- range TABLE(1,i) to TABLE(1,i+1). In this range,

--

-- y = w*Qn+(1-w)*Q1n

--

-- where,

--

-- w = 1-3*s**2+2*s**3, is the weighting function,

-- s = (x-TABLE(1,i))/(TABLE(1,i+1)-TABLE(1,i)),

-- the independent variable,

--

-- s has a normalised range [0,1] and,

-- w(0) = w(1) = w'(0) = w'(1) = 0.0.

--

-- The calling sequence is:

--

-- y:= AFGEN2(N,TABLE,x)

--

-- where,

--

-- N is the number of elements in the array,

-- TABLE is the table of values which represents a two row

-- n column matrix;

-- row 1 represents the input values and which

Chapter 3 Submodel Library

ESL Simulation Software - ESL Reference Manual 3-3

-- must be in ascending order,

-- row 2 represents the corresponding function values

-- x is the input value.

--

-- The output is an algebraic variable.

3.5 BISTBL
SUBMODEL BISTBL(LOGICAL:y := CONSTANT LOGICAL:IC;

 LOGICAL:reset,set,clock,x);

-- Logical bistable storage device which stores the

-- logical data input (x) as the clock input becomes TRUE.

-- A 'set' input of TRUE causes a TRUE to be stored and

-- inhibits the normal operation. Similarly, a reset value

-- of TRUE causes a FALSE to be stored and inhibits both

-- the set operation and normal operation. The calling

-- sequence is:

--

-- y:= BISTBL(IC,reset,set,clock,x)

--

-- where:

--

-- IC is the logical initial condition;

-- reset resets the bistable to a logical FALSE output;

-- set sets the bistable to a logical TRUE output;

-- clock is normally a logical pulse train; as it becomes

-- TRUE (edge triggering), the logical input (x) is

-- stored in the bistable memory;

-- x is the logical 'data' input variable.

--

-- y is given a value such that:

-- y = FALSE, if reset is TRUE;

-- y = TRUE, if set is TRUE and reset is FALSE;

-- y = x, when clock being TRUE provided set and reset

-- are FALSE.

--

-- The output is a memory variable.

3.6 CMPXPL
SUBMODEL CMPXPL(REAL:y := CONSTANT REAL:IC1,IC2; REAL:Zeta,Wn,x);

-- Represents a second order system with a damping ratio Zeta and

-- undamped natural frequency Wn.

-- The calling sequence is:

--

-- y:= CMPXPL(IC1,IC2,Zeta,Wn,x)

--

-- where:

-- IC1 and IC2 are the initial conditions of Y and Y';

-- Ztea and Wn are the damping ratio and natural frequency;

-- x is the input variable.

--

-- The differential equation is given by:

--

-- y'' = x - 2*Zeta*Wn*y' - Wn**2*y = x

--

-- and the equivalent Transfer function is:

--

-- y(s) 1

-- ---- = --------------------------

-- x(s) s**2 + 2*Zeta*Wn*s + Wn**2

Chapter 3 Submodel Library

ESL Simulation Software - ESL Reference Manual 3-4

--

-- The output is a memory variable.

3.7 COMPAR
SUBMODEL COMPAR(LOGICAL:y := REAL:x1,x2);

-- Sets a LOGICAL value from the comparison of the

-- amplitudes of two variables. The calling sequence is:

--

-- y:= COMPAR(x1,x2)

--

-- where:

-- x1 and x2 are input variables;

-- y is given a value such that:

-- y = TRUE, if x1 >= x2;

-- y = FALSE, if x1 < x2.

--

-- The output is a memory variable.

3.8 COMPB
SUBMODEL COMPB(LOGICAL:y := CONSTANT LOGICAL:IC;

 CONSTANT REAL:LL,UL; REAL:x);

-- Comparator with a backlash. The calling sequence is:

--

-- y:= COMPB(IC,LL,UL,x)

--

-- where:

-- IC is the logical initial condition;

-- LL is the lower limit;

-- UL is the lower limit;

-- x is the input variable.

--

-- y is given a value such that:

-- y = TRUE, when x >= UL becomes TRUE;

-- y = FALSE, when x < LL becomes TRUE.

--

-- Note the inputs LL and UL must be UL > LL, and are assumed

-- constant throughout a run. The output is a memory variable.

3.9 COULOMB
SUBMODEL COULOMB(REAL:friction := CONSTANT REAL:Fs,Fc;

 REAL:velocity,force);

-- Computes the coulomb friction force which results from the

-- movement of sliding surfaces given their relative velocity

-- and the effective applied force. The remaining available

-- force is given by:

-- available force = applied force - frictional force

--

-- The calling sequence is:

--

-- friction:= COULOMB(Fs,Fc,velocity,force)

--

-- where:

-- friction is the frictional force;

-- Fs is the static limiting friction value;

-- Fc is the coulomb friction value;

Chapter 3 Submodel Library

ESL Simulation Software - ESL Reference Manual 3-5

-- velocity is the relative velocity of sliding surfaces;

-- force is the applied force (causing sliding motion).

-- Note the inputs Fs, Fc are assumed constant throughout a run.

-- The output is an algebraic variable.

3.10 CPXPL
SUBMODEL CPXPL(REAL:y := CONSTANT REAL:IC1,IC2,Z,W; REAL:x);

-- Represents a second order transfer function with fixed complex

-- poles at (-Z - jW) and (-Z + jW), i.e.:

--

-- Y(s) 1

-- ---- = -------------------- .

-- X(s) (s + Z+jW)(s + Z-jW)

--

-- The corresponding differential equation which is solved is:

--

-- y'' = x - 2*Z*y' - (Z**2 + W**2)*y .

--

-- The calling sequence is:

--

-- Y:=CPXPL(IC1,IC2,Z,W,X)

--

-- where:

-- IC1 and IC2 are the initial values of Y and Y' respectively;

-- Z and W are the real and imaginary parts of the poles;

-- X is the input variable.

--

-- Setting Z=0 gives imaginary poles at +jW and -JW, and

-- setting W=0 gives a double real pole at -Z.

--

-- Note the inputs Z and W are assumed constant throughout a run.

-- The output is a memory variable.

3.11 DEADSP
SUBMODEL DEADSP(REAL:y := CONSTANT REAL:LL,UL; REAL:x);

-- Simulates the effect of a 'deadspace'. The calling

-- sequence is:

--

-- y:= DEADSP(LL,UL,x)

--

-- where:

-- LL is the lower limit;

-- UL is the upper limit;

-- x is the input variable;

-- y is given a value such that:

-- y = 0.0, if LL < x < UL;

-- y = x-UL, if x >= UL;

-- y = x-LL, if x <= LL.

--

-- Note the inputs LL, UL must be UL > LL, and are assumed constant

-- throughout a run. The output is an algebraic variable.

3.12 DELAY
SUBMODEL DELAY(REAL:y := CONSTANT INTEGER:N; CONSTANT REAL:WAIT;

 REAL:x);

Chapter 3 Submodel Library

ESL Simulation Software - ESL Reference Manual 3-6

-- Samples the input periodically and delays these sampled

-- values for a specified time period to produce a delayed

-- output. The calling sequence is:

--

-- y:= DELAY(N,WAIT,x)

--

-- where:

-- N is the number of samples during period WAIT;

-- WAIT is the time of the delay;

-- x is the input variable;

-- y is the sampled input delayed by a period WAIT.

--

-- The sampling period is:

-- per = WAIT/N

--

-- Note the inputs N and WAIT are assumed constant throughout a

-- run. The output is a memory variable.

3.13 DERIV
SUBMODEL DERIV(REAL:y := CONSTANT REAL:IC; REAL:x);

-- Outputs an approximation to the first derivative value of a

-- real input. The calling sequence is:

--

-- y:= DERIV(IC,x)

--

-- where:

-- IC is the initial condition;

-- x is the input variable;

-- y is given a value such that:

-- y = IC, initially;

-- y = (x-xlast)/(T-Tlast), elsewhere.

--

-- The output is an algebraic variable.

3.14 FG3D
procedure fg3d(real:table(*),x,y,z) return real;

-- Written 29th Jan 1994

-- Corrected 29th Jul 1994.

--

-- The function is called as:

--

-- real: f,x,y,z;

-- real: table(xx)/....../;

--

-- f:= fg3d(table,x,y,z);

--

-- The "table" array may define one, two or three dimension

-- generation. When one dimension generation is defined the

-- values of x and z in the call to fg3d are ignored, similarly

-- the value of z is ignored in two dimension generation.

--

-- The "table" data comprises:

--

-- no of independent variables, dimensions, function data.

--

-- where:

--

-- no of independent variables must be 1.0, 2.0 or 3.0.

--

-- dimensions: for each independent variable the number

Chapter 3 Submodel Library

ESL Simulation Software - ESL Reference Manual 3-7

-- of data points provided. A dimension of one is illegal.

--

-- function data the values of independent variables are listed

-- first. The number of these points must equal the sum of the

-- dimensions. Then the dependent values are listed for the

-- first independent variable changing fastest. The number of

-- data points must equal the product of the dimensions.

--

-- All data points, breakpoints, for each independent variable must

-- be in monotonically increasing order. Intermediate values may be

-- equal, but a breakpoint must never be less than the preceeding value.

--

-- Linear extrapolation is used when breakpoints are outside the

-- specified range, linear interpolation is used for data between

-- breakpoints

3.15 FGEN0
SUBMODEL FGEN0(REAL:y:= CONSTANT REAL:TABLE(2,*); REAL:x);

-- Searches a table of x-y coordinate values (ascending x order)

-- and returns a zero order interpolation corresponding to input

-- x. That is the y-table-value corresponding to the largest

-- x-table-value which is less than or equal to x. If x is less

-- than the first x-table-value then the first y-table-value is

-- returned. The calling sequence is:

--

-- y:= FGEN0(TABLE,x)

--

-- where:

-- TABLE is the table of values which represents a two row

-- n column matrix, row 1 represents the input values

-- which must be in ascending order, and row 2 represents

-- the corresponding function values;

-- x is the input value;

-- y is returned value.

--

-- The output is a memory variable.

3.16 FGEN1
SUBMODEL FGEN1(REAL:y:= CONSTANT REAL:TABLE(2,*); REAL:x);

-- Searches a table of x-y coordinate values and finds

-- which values span the input value of x and performs a

-- first order interpolation to obtain a value for y. The

-- calling sequence is:

--

-- y:= FGEN1(TABLE,x)

--

-- where:

-- TABLE is the table of values which represents a two row

-- n column matrix, row 1 represents the input values

-- which must be in ascending order, and row 2 represents

-- the corresponding function values;

-- x is the input value;

-- y is returned value.

--

-- y is calculated by use of the equation:

--

-- y = ycl+(x-xcl)*grad

--

-- where grad = (ycu-ycl)/(xcu-xcl), and

Chapter 3 Submodel Library

ESL Simulation Software - ESL Reference Manual 3-8

--

-- ycu - TABLE(2,i) array upper segment value;

-- ycl - TABLE(2,i-1) array lower segment value;

-- xcu - TABLE(1,i) array upper segment value;

-- xcl - TABLE(1,i-1) array lower segment value.

--

-- The output is an algebraic variable.

3.17 FGEN2
SUBMODEL FGEN2(REAL:y:= CONSTANT REAL:TABLE(2,*); REAL:x);

-- Searches a table of x-y coordinate values and finds

-- which values span the input of x and performs a second

-- order interpolation to obtain a value for y.

-- Over any segment, a number of simple polynomial fits

-- is found and the interpolated function, y, is a

-- weighted average over two of these; the weighting

-- being a function of the independent variable.

-- The weighting function has a zero slope at the points

-- where the interpolating polynomials switch over. In

-- the range TABLE(1,i) to TABLE(1,i+1), two quadratics

-- are used; Qn fits TABLE(2,i-1), TABLE(2,i) and

-- TABLE(2,i+1) and Q1n fits TABLE(2,i),

-- TABLE(2,i+1) and TABLE(2,i+2). Qn and Q1n overlap in the

-- range TABLE(1,i) to TABLE(1,i+1). In this range:

--

-- y = w*Qn+(1-w)*Q1n

--

-- where:

-- w = 1-3*s**2+2*s**3, is the weighting function,

-- s = (x-TABLE(1,i))/(TABLE(1,i+1)-TABLE(1,i)),

-- the independent variable,

--

-- s has a normalised range [0,1] and,

-- w(0) = w(1) = w'(0) = w'(1) = 0.0.

--

-- The calling sequence is:

--

-- y:= FGEN2(TABLE,x)

--

-- where:

-- TABLE is the table of values which represents a two row

-- n column matrix, row 1 represents the input values

-- which must be in ascending order, and row 2 represents

-- the corresponding function values;

-- x is the input value;

-- y is returned value.

--

-- The output is an algebraic variable.

3.18 FHOLD
SUBMODEL FHOLD(REAL:y := CONSTANT REAL:IC,per; REAL:x);

-- Provides a first order hold function. It periodically

-- samples and holds the value of an input; the output is

-- 'held' value modified by the slope resulting from the

-- previous two samples. The calling sequence is:

--

-- y:= FHOLD(IC,per,x)

--

-- where:

Chapter 3 Submodel Library

ESL Simulation Software - ESL Reference Manual 3-9

-- IC is the initial condition, (y at sampling point,

-- TSTART-per);

-- per is the sampling period, and is treated as constant

-- through a run;

-- x is the input variable;

-- y is given a value such that;

-- y = last sample + slope*(T-start)

-- where slope is the gradient joining the two

-- previously sampled input values, and start is

-- the time at the start of the present period.

--

-- The output is an algebraic variable.

3.19 FOURINT
SUBMODEL FOURINT(REAL:mag,angle := CONSTANT INTEGER: n;

 CONSTANT REAL:Tperiod; REAL:x);

-- Calculates the rms magnitude and angle of a specified

-- harmonic component of the Fourier series for an input

-- signal. The submodel detects when the signal becomes

-- greater than zero, times the period of the signal and

-- computes the Fourier coefficients. The main output is

-- the statistics printed at the end of each cycle. They

-- give values of the computed coefficients and the size of

-- changes which have occurred during the last cycle. Small

-- changes indicate that a steady-state has been achieved

-- and the results can be treated with some confidence.

-- The calling sequence is:

--

-- mag,angle:= FOURINT(n,Tperiod,x)

--

-- where:

-- mag and angle are the computed Fourier coefficient rms

-- magnitude and angle (degrees);

-- n is the harmonic number: 1, 2, 3, etc.;

-- Tperiod is the approximate period specified by the user,

-- it need not be accurate but must be non-zero;

-- x is the object waveform whose coefficients are to be

-- computed.

--

-- The output is a memory variable.

3.20 HSTRSS
SUBMODEL HSTRSS(REAL:y := CONSTANT REAL:IC,LL,UL; REAL:x);

-- Simulates a pure hysteresis or backlash function. The

-- calling sequence is:

--

-- y:= HSTRS(IC,LL,UL,x)

--

-- where:

-- IC is the initial condition for y;

-- (x - LL) is the lower limit line on the y/x graph;

-- (x - UL) is the upper limit line on the y/x graph;

-- x is the input function.

-- Note UL > LL.

--

-- y is given a value such that:

--

-- initially y = x-UL, if (x-UL) >= IC,

-- = x-LL, if (x-LL) <= IC,

Chapter 3 Submodel Library

ESL Simulation Software - ESL Reference Manual 3-10

-- = IC otherwise;

-- y = x-UL, if (x-UL) >= Ylast;

-- y = x-LL, if (x-LL) <= Ylast;

-- y = Ylast, otherwise.

--

-- Ylast is the previous value of y.

--

-- Note UL > LL, and UL and LL are considered constant throughout

-- run. The output is an algebraic variable.

3.21 IMPUL
SUBMODEL IMPUL(LOGICAL:y := CONSTANT REAL:Td,per);

-- Generates a periodic logical train of impulses (TRUE for

-- zero time) following an initial time delay. The calling

-- sequence:

--

-- y:= IMPUL(Td,per)

--

-- where:

-- Td is the time delay before first pulse (at TSTART+Td);

-- if Td zero, or negative, the first pulse will occur

-- at (TSTART+per),

-- per is the interval (period) between pulses.

--

-- Note the time delay (Td) or period (per) cannot be changed

-- once simulation has started. The output is a memory variable.

3.22 INTEG
SUBMODEL INTEG(REAL:y := CONSTANT REAL:IC; REAL:x);

-- Standard integrator, ordinary style CSSL type. The

-- calling sequence is:

--

-- y:= INTEG(IC,x)

--

-- where:

-- IC is the initial condition;

-- x is the input variable.

--

-- The output is a memory variable.

3.23 INTX
SUBMODEL INTX(INTEGER:y := REAL:x);

-- Outputs the integer value of a real input. This is the

-- modelling version of the standard function which treats

-- changes in output as discontinuities. The calling

-- sequence is:

--

-- y:= INTX(x)

--

-- where:

-- x is the input variable;

-- y is given a value that is equal to INT(x).

--

-- Note, with the sign removed, x is truncated to the

-- largest integer less than or equal to x and then the

Chapter 3 Submodel Library

ESL Simulation Software - ESL Reference Manual 3-11

-- sign of x is added to the integer result. The output

-- is a memory variable.

3.24 LEDLAG
SUBMODEL LEDLAG(REAL:y := CONSTANT REAL:YIC,P1,P2; REAL:x);

-- Generates a lead-lag transfer function. The calling

-- sequence is:

--

-- y:= LEDLAG(YIC,P1,P2,x)

--

-- where:

-- YIC is the initial condition for y;

-- P1 and P2 are constants which must be non-zero;

-- x is the input variable.

--

-- The differential equation is given by:

--

-- P2*y'+y = P1*x'+x

--

-- and the equivalent Laplace Transform function is:

--

-- y(s) P1*s + 1

-- ---- = -------- .

-- x(s) P2*s + 1

--

-- Note the inputs P1, P2 are assumed constant throughout a run.

-- The output is an algebraic variable.

3.25 LIMINT
SUBMODEL LIMINT(REAL:y := CONSTANT REAL:IC,LL,UL; REAL:x);

-- A limited function, which holds the integrator at a

-- limit as long as the derivative is of such a sign to

-- drive it further into limit. When the derivative

-- reverses sign, the integrator will immediately come off

-- limit. The calling sequence is:

--

-- y:= LIMINT(IC,LL,UL,x)

--

-- where:

-- IC is the initial condition;

-- LL is the lower limit on y;

-- UL is the upper limit on y;

-- x is the expression for the derivative.

-- y is given a value such that:

-- y = INTGL(x), with y(TSTART) = IC, and

-- y' = 0, if y > UL and x >= 0.0,

-- y' = 0, if y < LL and x <= 0.0,

-- y' = x, if LL <= y <= UL.

--

-- Note the inputs LL, UL must be UL > LL, and are assumed

-- constant throughout a run. The output is a memory variable.

3.26 LIMIT
SUBMODEL LIMIT(REAL:y := CONSTANT REAL:LL,UL; REAL:x);

-- A limiter sets lower and upper limits on the amplitude

Chapter 3 Submodel Library

ESL Simulation Software - ESL Reference Manual 3-12

-- of an input variable. The calling sequence is:

--

-- y:= LIMIT(LL,UL,x)

--

-- where:

-- LL is the lower limit;

-- UL is the upper limit;

-- x is the input variable.

-- y is given a value such that:

-- y = x, if LL < x < UL,

-- y = UL, if x >= UL,

-- y = LL, if x <= LL.

--

-- Note the inputs LL, UL must be UL > LL, and are assumed

-- constant throughout a run. The output is an algebraic

-- variable.

3.27 LOGINT
SUBMODEL LOGINT(REAL:y := LOGICAL:reset,integ; CONSTANT REAL:IC;

 REAL:x);

-- Simulates a logically controlled integrator. The

-- calling sequence is:

--

-- y:= LOGINT(reset,integ,IC,x)

--

-- where:

-- reset is a logical input. When reset becomes TRUE,

-- the integrator is set to its initial condition

-- (edge-triggering);

-- integ is the logical input; if TRUE then integration

-- takes place, else the current integrator output

-- is held;

-- IC is the initial condition;

-- x is the input variable.

-- y is given a value such that:

-- y' = x, if integ is TRUE,

-- y' = 0, if integ is FALSE.

--

-- The output is a memory variable.

3.28 MODULT
SUBMODEL MODULT(LOGICAL:Y := CONSTANT REAL:Td; REAL:sig;

 CONSTANT REAL:per);

-- Logical pulse width modulator which generates a logical

-- pulse train with specified period and a mark-space

-- ratio. An initial delay is permitted, and the initial

-- output may be specified as TRUE or FALSE. The calling

-- sequence is:

--

-- y:= MODULT(Td,sig,per)

--

-- where:

-- Td is the time at which the pulse train starts. If

-- Td >= 0.0, y will remain FALSE for Td seconds. If

-- Td < 0.0, pulse train will remain TRUE for

-- (-Td) seconds.

-- sig is the modulating signal in the range (0..1).

-- per is the period of the pulse train in units of T.

--

Chapter 3 Submodel Library

ESL Simulation Software - ESL Reference Manual 3-13

-- Note that Td and per are regarded as constant during a run.

-- The output is a memory variable.

3.29 MONO
SUBMODEL MONO(LOGICAL:y := REAL:w,x);

-- A monostable function sets the output TRUE for a

-- specified time period when the input becomes positive,

-- it will remain TRUE if the input also remains TRUE.

-- The calling sequence is:

--

-- y:= MONO(w,x)

--

-- where:

-- w is the width of the pulse;

-- x is the input variable;

-- y is given a value such that:

-- y = TRUE, when x >= 0.0 becomes TRUE and stays TRUE

-- for at least w units of T, or until x

-- becomes negative;

-- y = FALSE, otherwise.

--

-- The output is a memory variable.

3.30 PICONT
SUBMODEL PICONT(REAL:y := CONSTANT REAL:IC; REAL:TC,K,x);

-- This submodel defines a proportional plus integral (PI)

-- controller. The calling sequence is:

--

-- y:= PICONT(IC,TC,K,x)

--

-- where:

-- IC is the integrator initial condition, z(TSTART) = IC;

-- TC is the time constant of the integrator;

-- K is the proportional gain;

-- x is the input variable.

--

-- The differential equations are given by:

--

-- z' = x/TC

--

-- y = K*(x+z)

--

-- and the equivalent Laplace Transform function is:

--

-- y(s) K

-- --- = K + ----

-- x(s) s*TC

--

-- The output is an algebraic variable.

3.31 PIDCONT
SUBMODEL PIDCONT(REAL: u := CONSTANT REAL: ic, prop_band, Ti, Td; REAL:

e);

--

-- Three Term Controller with limited output and integral anti-windup

--

Chapter 3 Submodel Library

ESL Simulation Software - ESL Reference Manual 3-14

-- inputs:

-- ic initial value of integral term

-- prop_band proportional gain

-- Ti integral action time constant

-- Td derivative action time constant

-- e error signal

-- output:

-- u control actuation signal

--

-- The output is calculated as:

--

-- u = 100/prop_band*(e + 1/Ti*integral(e) + Td*derivative(e))

--

-- The output, u, is limited to the range -1.0 to + 1.0.

--

-- Integral action is inhibited if the output is in limit and the input

-- is such as to force the output further into limit i.e.

--

-- if u >= 1.0 and e > 0.0 or u <= -1 and e < 0.0

3.32 PIDCONT1
SUBMODEL PIDCONT1(REAL: u, e :=

 CONSTANT REAL: ic, prop_band, dead_band, Ti, Td;

 REAL: sp, um, pv);

--

-- Three Term Controller with limited output, anti-windup and dead-space

--

-- inputs (constants):

-- ic initial value of integral term

-- prop_band proportional gain (%)

-- dead_band variation in error for no change in output (%)

-- Ti integral action time constant

-- Td derivative action time constant

--

-- inputs (variables):

-- sp set point

-- pv process variable

-- um offset - to make error zero when control action

-- is proportional only

-- outputs:

-- u control actuation signal

-- e error signal (provided for monitoring)

--

-- The output is calculated as:

--

-- u = 100/prop_band*(e + 1/Ti*integral(e) + Td*derivative(e)) + um

--

-- Inputs are assumed to be normalized i.e. in range -1 to +1.

--

-- The output, u, is limited to the range -1.0 to + 1.0.

--

-- Integral action is inhibited if the output is in limit and the input

-- is such as to force the output further into limit i.e.

--

-- if u >= 1.0 and e > 0.0 or u <= -1 and e < 0.0

--

-- The error has no effect if within the dead band i.e.

--

-- effective error = if e < -dead_band/100 then e + dead_band/100

-- else_if e > dead_band/100 then e - dead_band/100

-- else 0.0;

Chapter 3 Submodel Library

ESL Simulation Software - ESL Reference Manual 3-15

3.33 POLYROOTS
--

-- Finds complex roots of a polynomial using Eigenvalue method

--

-- Y := PollyRoots(p, A, Y, n);

--

-- p Vector (size n+1) of polynomial coefficients in ascending order

-- A nxn work matrix;

-- Y nx2 matrix returning complex roots

-- n Order of polynomial

3.34 POLYVAL
--

-- Evaluates a polynomial value using nested multiplication

--

-- y := PolyVal(p, x, n);

--

-- p Vector (size n+1) of polynomial coefficients in ascending order

-- x Real value at which polynomial is to be evaluated

-- n Order of polynomial

3.35 QNTZR
SUBMODEL QNTZR(REAL:y := CONSTANT REAL:P; REAL:x);

-- Quantizes the input variable x (with quantization

-- interval P) so that the output is the largest value of

-- n*P < x where n is an integer. The calling sequence is:

--

-- y:= QNTZR(P,x)

--

-- where:

-- P is a constant;

-- x is the input variable;

-- y is given a value such that:

-- y = i*P

-- where i is the largest integer such that, i*p <= x.

--

-- Note the input P is assumed constant throughout a run.

-- The output is a memory variable.

3.36 RAMP
SUBMODEL RAMP(REAL:y := REAL:Tgo);

-- Generates a linear ramp of unit slope starting at a

-- specified time. The calling sequence is:

--

-- y:= RAMP(Tgo)

--

-- where:

-- Tgo is the start time of the ramp;

-- y is given a value such that:

-- y = 0.0, if T < Tgo,

-- y = T-Tgo, if T >= Tgo.

--

-- The output is an algebraic variable.

Chapter 3 Submodel Library

ESL Simulation Software - ESL Reference Manual 3-16

3.37 REALPL
SUBMODEL REALPL(REAL:y := CONSTANT REAL:IC,P; REAL:x);

-- Generates a first order real pole transfer function.

-- The calling sequence is:

--

-- y:= REALPL(IC,P,x)

--

-- where:

-- IC is the initial condition, y(TSTART) = IC;

-- P is a constant;

-- x is the input variable.

--

-- The differential equation is given by:

--

-- P*y'+y = x

--

-- and the equivalent Laplace Transform function is:

--

-- y(s) 1

-- ---- = ------- .

-- x(s) P*s + 1

--

-- Note the input P is assumed constant throughout a run.

-- The output is a memory variable.

3.38 RECNS0
SUBMODEL RECNS0(REAL: y:= CONSTANT REAL: XIC,TAU; REAL:x);

-- Outputs the reconstruction of the data values which are

-- input arguments to a segment, or output arguments from a

-- segment. The calling sequence is:

--

-- y:= RECNS0(XIC,TAU,x);

-- where:

-- XIC corresponds to the value of x at (TSTART-TAU),

-- and is also the initial output value for y.

-- TAU must be a multiple of CINT, and equal to the

-- communication interval of the segment. That is,

-- it is the time period between updates in x.

-- x is the input variable, which is updated after each

-- interval of TAU, a multiple of CINT.

-- y is the output which is computed by:

-- y = xlast + dx * (T-Tlast)

-- xlast is the previous value of x at (Tlast-TAU),

-- dx is the most recent derivative of x.

-- Note that y is a first-order interpolation of the input x, it

-- contains no jumps, or steps. That is, no high frequency

-- components are introduced, but a phase error of TAU results.

-- Note TAU is considered constant throughout a simulation run.

-- The output is an algebraic variable.

3.39 RECNS1
SUBMODEL RECNS1(REAL: y:= CONSTANT REAL: XIC,TAU; REAL:x);

-- Outputs the reconstruction of the data values which are

-- input arguments to a segment, or output arguments from a

-- segment. The calling sequence is:

--

-- y:= RECNS0(XIC,TAU,x);

Chapter 3 Submodel Library

ESL Simulation Software - ESL Reference Manual 3-17

--

-- where:

-- XIC corresponds to the value of x at (TSTART-TAU),

-- and is also the initial output value for y.

-- TAU must be a multiple of CINT, and equal to the

-- communication interval of the segment. That is,

-- it is the time period between updates in x.

-- x is the input variable, which is updated after each

-- interval of TAU, a multiple of CINT.

-- y is the output which is computed by:

-- y = xlast + dx * (T-Tlast)

-- xlast is the current value of x,

-- Tlast is point when x last changed,

-- dx is the most recent approx derivative of x;

--

-- Note that y is a first-order prediction of the input x, it

-- contains jumps, or steps, caused by the approximate derivative.

-- That is, high frequency components are introduced, but a phase

-- error is minimal. Note TAU is considered constant throughout a

-- simulation run. The output is an algebraic variable.

3.40 RECT
SUBMODEL RECT(LOGICAL:cond := REAL:i,v; LOGICAL: gate;

 CONSTANT LOGICAL:ic);

-- Determines whether the rectifier is conducting. The

-- calling sequence is:

--

-- cond:= RECT(i,v,gate)

--

-- where:

-- cond is a logical memory variable set TRUE if conducting;

-- i is the current through rectifier;

-- v is the voltage across rectifier, a positive value

-- indicates rectifier could conduct if a gate pulse

-- is also present;

-- gate is a logical TRUE if gate pulse is present;

-- ic is true if rectifier initially conducting, else false.

--

-- It is assumed that the calling code will set the voltage

-- to zero during periods of conduction, and the current is

-- held at zero or slightly negative during non-conduction.

-- The output is a memory variable.

3.41 SAMHLD
SUBMODEL SAMHLD(REAL:y := CONSTANT REAL:per; REAL:x);

-- Samples and holds the value of an input variable.

-- Samples are taken periodically and the output is the

-- value of the last sample taken. The calling sequence is:

--

-- y:= SAMHLD(per,x)

--

-- where:

-- per is the sampling period;

-- x is the input variable;

-- y is given a value such that:

-- y = x, initially,

-- y = x, at the last sampling period.

--

-- Note per is assumed constant throughout a simulation run.

-- The output is a memory variable.

Chapter 3 Submodel Library

ESL Simulation Software - ESL Reference Manual 3-18

3.42 SQRTX
PROCEDURE SQRTX(REAL:x)RETURN REAL;

-- Outputs the square root value of a real input. The

-- calling sequence is:

--

-- y:= SQRTX(x)

--

-- where:

-- x is the input variable;

-- y is given a value such that:

-- y = if x is positive then SQRT(x)

-- else -SQRT(-x).

--

-- This modelling version of the standard function is

-- necessary because due to minor errors, or during

-- integration interpolation passes, it is possible that

-- x may become negative. This formulation avoids failures

-- due to this cause. The output is an algebraic variable.

3.43 STEPP
SUBMODEL STEPP(LOGICAL:y := REAL:Tgo);

-- Produces a change from FALSE to TRUE at a specified step

-- time (Tgo). The calling sequence is:

--

-- y:= STEPP(Tgo)

--

-- where:

-- Tgo is the start time of the step;

-- y is given a value such that:

-- y = FALSE, if T < Tgo,

-- y = TRUE, if T >= Tgo.

--

-- The output is a memory variable.

3.44 TIMER
SUBMODEL TIMER(REAL:elapsed := LOGICAL:reset);

-- Returns the elapsed time since the last reset. In the

-- time returned is that time since the previous reset

-- point, and the following invocations will return the

-- time from the most recent reset point. The calling

-- sequence is:

--

-- elapsed:= TIMER(reset)

--

-- where:

-- elapsed is the simulated time since the last reset;

-- reset is a logical expression which resets the timing

-- mechanism when it becomes true, note that the

-- reset operation only takes place at the instant

-- it changes from false to true. During the

-- invocation in which the reset occurs the elapsed

-- time returned is for the period from the previous

-- reset

-- The output is an algebraic variable.

Chapter 3 Submodel Library

ESL Simulation Software - ESL Reference Manual 3-19

3.45 ZHOLD
SUBMODEL ZHOLD(REAL:y := CONSTANT REAL:IC; LOGICAL:hold; REAL:x);

-- Simulates the effect of a zero-order hold with logical

-- input control. The calling sequence is:

--

-- y:= ZHOLD(IC,hold,x)

--

-- where:

-- hold and x are input variables;

-- y is given a value such that:

-- y = last value of output, if hold is TRUE,

-- y = x, elsewhere.

--

-- The output is an algebraic variable.

Chapter 4 ESL Syntax

ESL Simulation Software - ESL Reference Manual 4-1

CHAPTER 4

4 ESL Syntax

4.1 Syntax Summary
This section provides a full MBNF syntax definition of the ESL language, with a page
references to each syntax statement, and then an alphabetical list of the "terminal Symbols"
and keywords.

upper_case_letter =

 "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |

 "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |

 "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z".

lower_case_letter =

 "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |

 "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |

 "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z".

digit =

 "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".

special_character =

 """" | "(" | ")" | "*" | "+" | "," | "-" | "." | "/" |

 ":" | ";" | "<" | "=" | ">" | "_" | "[" | "]".

space_character =

 " ".

other_special_character =

 "!" | "'" | "£" | "$" | "%" | "&" | "?" | "@" | "\" |

 "^" | "{" | "|" | "}" | "~".

identifier =

 letter {letter | digit | "_"}.

letter =

 upper_case_letter | lower_case_letter.

variable =

 identifier ["(" subscript {"," subscript} ")"].

subscript =

 expression [".." expression].

derivative_identifier =

 identifier "'" { "'" }.

derivative_variable =

 derivative_identifier

 ["(" subscript {"," subscript} ")"].

character_string =

 """" character {character} """" |

 "%" character {character} "%".

Chapter 4 ESL Syntax

ESL Simulation Software - ESL Reference Manual 4-2

character =

 letter | digit | space_character |

 special_character |

 other_special_character.

number=

 real_number | integer.

real_number =

 integer ("." (integer [exponent] | exponent) | exponent).

exponent =

 ("E"|"e"|"D"|"d") ["+"|"-"] integer.

integer =

 digit {digit}.

library_declaration =

 "--" "LIBRARY" file_identifier {"," file_identifier}.

file_identifier =

 character {character}.

include_statement =

 "INCLUDE" character_string ["-" ("L"|"l")] ";".

program =

 study_program | remote_program |

 embedded_program | non_program.

study_program =

 "STUDY"

 {program_unit}

 experiment

 "END_STUDY".

remote_program =

 "REMOTE"

 {package_specification |

 procedure_subprogram |

 function_subprogram |

 submodel_subprogram }

 segment_subprogram.

embedded_program =

 "EMBEDDED"

 {package_specification |

 procedure_subprogram |

 function_subprogram |

 submodel_subprogram }

 segment_subprogram.

non_program =

 {program_unit}.

Chapter 4 ESL Syntax

ESL Simulation Software - ESL Reference Manual 4-3

program_unit =

 package_specification |

 procedure_subprogram |

 function_subprogram |

 model_subprogram |

 submodel_subprogram |

 segment_subprogram |

 external_segment_declaration.

model_subprogram =

 "MODEL" identifier argument_specification ";"

 declarations

 model_body

 "END" [identifier] ";".

model_body =

 ["INITIAL" statements]

 "DYNAMIC" dynamic_region_code

 ["TERMINAL" statements]

 ["ANALYSIS" statements].

dynamic_region_code =

 {model_statement ";"}

 ["STEP" statements]

 ["COMMUNICATION" statements].

submodel_subprogram =

 "SUBMODEL" identifier argument_specification ";"

 declarations

 submodel_body

 "END" [identifier] ";".

submodel_body =

 ["INITIAL" statements]

 "DYNAMIC" dynamic_region_code.

submodel_call_statement =

 output_arguments ":="

 identifier "(" input_arguments ")" ";".

segment_subprogram =

 "SEGMENT" identifier argument_specification ";"

 declarations

 segment_body

 "END" [identifier] ";".

segment_body =

 ["INITIAL" statements]

 "DYNAMIC" dynamic_region_code.

Chapter 4 ESL Syntax

ESL Simulation Software - ESL Reference Manual 4-4

external_segment_declaration =

 "SEGMENT" identifier argument_specification

 "EXTERNAL" ";"

 [declarations segment_body]

 "END" [identifier] ";".

procedure_subprogram =

 "PROCEDURE" identifier

 ["("[argument_list]")"]";"

 procedure_specification

 "END"[identifier]";".

procedure_specification =

 declarations

 statements.

function_subprogram =

 "PROCEDURE" identifier

 "("[argument_list]")" "RETURN" type ";"

 procedure_specification

 "RETURN" expression ";"

 "END"[identifier]";".

function_call =

 identifier "(" expression {"," expression} ")".

package_specification =

 "PACKAGE" identifier";"

 declarations

 "END" [identifier]";".

argument_specification =

 ["(" [output_argument_list]

 [":=" input_argument_list] ")"].

output_argument_list =

 argument_list.

input_argument_list =

 input_argument_declaration

 { "," input_argument_declaration}.

input_argument_declaration =

 ["CONSTANT"] variable_type_declaration | file_declaration.

argument_list =

 argument_declaration

 { ";" argument_declaration}.

argument_declaration =

 variable_type_declaration | file_declaration.

Chapter 4 ESL Syntax

ESL Simulation Software - ESL Reference Manual 4-5

variable_type_declaration =

 type ":"

 variable_declaration

 {"," variable_declaration}.

variable_declaration =

 identifier ["("(dimension_bounds|"*")

 {","(dimension_bounds|"*")}")"].

type =

 "REAL"|"INTEGER"|"LOGICAL"|"CHARACTER".

declarations =

 { (external_declaration

 | file_declaration

 | constant_declaration

 | parameter_declaration

 | type_declaration

 | use_declaration

 | nosort_declaration) }.

type_declaration =

 type ":" declaration_variable

 [("/" | "[") aggregate ("/" | "]")]

 {"," declaration_variable

 [("/" | "[") aggregate ("/" | "]")]}.

declaration_variable =

 identifier

 ["(" dimension_bounds {"," dimension_bounds} ")"].

dimension_bounds =

 ["-"] integer [".." ["-"] integer].

aggregate =

 aggregate_element {"," aggregate_element }.

aggregate_element =

 {(identifier | integer) "*"}

 (identifier | ["+"|"-"] (integer | real_number) |

 "FALSE" | "TRUE" | character_string).

constant_declaration =

 "CONSTANT" type ":" declaration_variable

 ("/" | "[") aggregate ("/" | "]")

 {"," declaration_variable

 ("/" | "[") aggregate ("/" | "]")} ";".

parameter_declaration =

 "PARAMETER" type ":" declaration_variable

 ("/" | "[") aggregate ("/" | "]")

 {"," declaration_variable

 ("/" | "[") aggregate ("/" | "]")}.

file_declaration =

Chapter 4 ESL Syntax

ESL Simulation Software - ESL Reference Manual 4-6

 "FILE" ":" file_specifier {"," file_specifier} ";".

file_specifier =

 identifier.

external_declaration =

 "EXTERNAL" [type ":"] identifier

 {"," identifier} ";".

use_declaration =

 "USE" identifier {"," identifier} ";".

nosort_declaration =

 "NOSORT" ";".

experiment =

 declarations

 statements.

model_statement =

 model_variable_statement |

 submodel_call_statement |

 procedural_model_block |

 when_statement.

model_variable_statement =

 model_variable ":="

 expression | if_clause | transfer_expression | transfer_matrix_expression.

model_variable =

 identifier | derivative_identifier.

transfer_expression =

 "TRANSFER" "(" ([gain]

 transfer_factor {transfer_factor} | gain)

 "/"([pole] transfer_factor {transfer_factor} | pole)

 {"," initial_expression} ")" "*" input_expression ";".

gain =

 [unary_operator] coefficient.

coefficient =

 ["-"|"+"] identifier | number.

transfer_factor =

 "(" [unary_operator] transfer_term

 {adding_operator transfer_term } ")".

transfer_term =

 coefficient ["*" pole] | pole.

pole =

 ("S" | "s") ["**" integer].

initial_expression =

 expression.

input_expression =

 expression.

Chapter 4 ESL Syntax

ESL Simulation Software - ESL Reference Manual 4-7

transfer_matrix_expression =

 "TRANSFER_MATRIX" "(" denominator

 " [" matrix_row { “;” matrix_row } "]" ")" "*" input_expression ";".

denominator =

 ([pole] transfer_factor { transfer_factor } | pole).

matrix_row =

 numerator { "," numerator }.

numerator =

 (([gain ["*" zero] | zero]) transfer_factor { transfer_factor } | (gain ["*" zero] | zero)).

zero =

 ("S" | "s") ["**" integer].

if_clause =

 "IF" logic_expression "THEN" expression

 {"ELSE_IF" logic_expression "THEN" expression}

 "ELSE" expression.

when_statement =

 "WHEN" logic_expression "THEN"

 statements

 {"WHEN" logic_expression "THEN"

 statements}

 "END_WHEN".

logic_expression =

 expression.

procedural_model_block =

 "PROCEDURAL" ["(" [output_list]

 [":=" input_list] ")"]";"

 statements

 "END_PROCEDURAL" ";".

output_list =

 identifier {"," identifier}.

input_list =

 model_variable {"," model_variable}.

statements =

 {procedural_statement}.

Chapter 4 ESL Syntax

ESL Simulation Software - ESL Reference Manual 4-8

procedural_statement =

 procedural_assignment_statement

 | if_statement

 | loop_statement

 | terminate_statement

 | return_statement

 | stop_statement

 | subprogram_call

 | open_statement

 | create_statement

 | rewrite_statement]

 | close_statement

 | delete_statement

 | print_statement

 | read_statement

 | readel_statement

 | prepare_statement

 | tabulate_statement

 | plot_statement

 | clear_screen_statement

 | interact_statement

 | trim_statement

 | linearize_statement

 | eigenvalue_statement

 | optimize_statement

 | resume_statement

 | restart_statement

 | snapshot_statement.

procedural_assignment_statement =

 variable | derivative_identifier | derivative_variable

 ":=" expression.

if_statement =

 "IF" logic_expression "THEN"

 statements

 {"ELSE_IF" logic_expression "THEN"

 statements}

 ["ELSE"

 statements]

 "END_IF" ";".

loop_statement =

 [iteration_specification] basic_loop.

Chapter 4 ESL Syntax

ESL Simulation Software - ESL Reference Manual 4-9

iteration_specification =

 ("FOR" identifier ":=" expression ".." expression

 ["STEP" expression]) |

 ("WHILE" logic_expression).

basic_loop =

 "LOOP"

 statements

 "END_LOOP" ";".

terminate_statement =

 "TERMINATE" logic_expression ";".

return_statement =

 "RETURN" [expression] ";".

stop_statement =

 "STOP" ";".

subprogram_call =

 identifier["("output_arguments

 [":="input_arguments]")"]";".

output_arguments =

 variable | derivative_variable

 {"," variable | derivative_variable}.

input_arguments =

 expression {"," expression}.

linearize_statement =

 "LINEARIZE" a_matrix "," b_matrix ":="

 "[" state_vector "]" "," "[" input_vector "]"

 [c_matrix "," d_matrix ":=" "[" output_vector "]"] ";".

state_vector =

 (identifier | derivative_identifier)

 {","(identifier | derivative_identifier) }.

input_vector =

 identifier {","identifier}.

output_vector =

 identifier {","identifier}.

a_matrix =

 identifier.

b_matrix =

 identifier.

c_matrix =

 identifier.

d_matrix =

 identifier.

trim_statement =

 "TRIM" "[" control_vector "]" ":="

 "[" derivative_vector "]" ";".

Chapter 4 ESL Syntax

ESL Simulation Software - ESL Reference Manual 4-10

control_vector =

 (identifier | derivative_identifier)

 {"," (identifier | derivative_identifier) }.

derivative_vector =

 (identifier | derivative_identifier)

 {"," (identifier | derivative_identifier) }.

eigenvalue_statement =

 "EIGENVALUE" eigenvalue_array ":="

 system_matrix ";".

eigenvalue_array =

 identifier.

system_matrix =

 identifier.

optimize_statement =

 "OPTIMIZE" identifier "(" variable ":="

 variable {variable} ")" ";".

resume_statement =

 "RESUME" subprogram_call ";".

restart_statement =

 "RESTART" subprogram_call ";".

snapshot_statement =

 "SNAPSHOT" [file_name] ";".

interact_statement =

 "INTERACT" ";".

open_statement =

 "OPEN" file_specifier "," file_name

 ["," file_status] ";".

file_name =

 character_expression.

create_statement =

 "CREATE" file_specifier "," file_name

 ["," file_status] ";".

rewrite_statement =

 "REWRITE" file_specifier "," file_name

 ["," file_status] ";".

close_statement =

 "CLOSE" file_specifier ";".

delete_statement =

 "DELETE" file_name ["," file_status] ";".

file_status =

 "IOSTAT" "=" integer_identifier.

Chapter 4 ESL Syntax

ESL Simulation Software - ESL Reference Manual 4-11

print_statement =

 "PRINT" [(file_specifier | print_element)

 {"," print_element }] ";".

print_element =

 expression [":" print_format_control]

 | "/" {"/"}

 | "-/".

print_format_control =

 ["-"] integer ["." integer].

plot_statement =

 "PLOT" [plot_title ","]

 independent_variable ","

 dependent_variable

 ("," [more_depend_var] | more_depend_var)

 x_min "," x_max ","

 y_min "," y_max ";".

independent_variable =

 model_variable | expression.

more_depend_var =

 "[" dependent_variable

 { "," dependent_variable } "]" [","].

dependent_variable =

 model_variable | expression.

x_min =

 expression.

 x_max =

 expression.

 y_min =

 expression.

 y_max =

 expression.

clear_screen_statement =

 "CLEAR_SCREEN" ";".

tabulate_statement =

 "TABULATE" [file_specifier |

 file_name ","]

 output_value {"," output_value} ";".

output_value =

 model_variable | expression.

Chapter 4 ESL Syntax

ESL Simulation Software - ESL Reference Manual 4-12

prepare_statement =

 "PREPARE" file_name ","

 [plot_title ","]

 [plot_subtitle ","]

 output_value "," [value_title ","]

 {output_value "," [value_title ","]} ";".

plot_title =

 character_expression.

 plot_subtitle =

 character_expression.

 value_title =

 character_expression.

read_statement =

 "READ" [(file_specifier | prompt | read_element)

 {"," read_element}

 ["," file_status] | file_status] ";".

prompt =

 character_string | "(" expression ")".

read_element =

 variable [":" read_format_control].

read_format_control =

 ["-"] integer ["." integer].

readel_statement =

 "READEL" [read_element {"," read_element}

 ["," file_status] | file_status] ";".

expression =

 logical_term {"OR" logical_term}.

logical_term =

 logical_factor {"AND" logical_factor}.

logical_factor =

 ["NOT"] logical_primary.

logical_primary =

 simple_expression

 [relational_operator simple_expression].

simple_expression =

 [unary_operator] term {adding_operator term}.

term =

 factor {multiplying_operator factor}.

factor =

 primary {exponentiating_operator primary}.

Chapter 4 ESL Syntax

ESL Simulation Software - ESL Reference Manual 4-13

primary =

 "(" expression ")" |

 function_call |

 variable |

 derivative_identifier | derivative_variable

 number |

 character_string |

 "FALSE" |

 "TRUE".

relational_operator =

 "=" | "/=" | "<" | "<=" | ">" | ">=".

adding_operator =

 "+" | "-".

unary_operator =

 "+" | "-".

multiplying_operator =

 "*" | "/" | dot_product | cross_product.

exponentiating_operator =

 "**".

dot_product =

 ".".

cross_product =

 "^".

Chapter 4 ESL Syntax

ESL Simulation Software - ESL Reference Manual 4-14

4.2 Syntax Keywords

The following list all two, or more, character "terminal symbols" used in the syntax
specification in alphabetic order.

**

--

-/

..

/=

:=

<=

>=

ANALYSIS

AND

CHARACTER

CLEAR_SCREEN

CLOSE

COMMUNICATION

CONSTANT

CREATE

DELETE

DYNAMIC

EIGENVALUE

ELSE

ELSE_IF

EMBEDDED

END

END_IF

END_LOOP

END_PROCEDURAL

END_STUDY

END_WHEN

EXTERNAL

FALSE

FILE

FOR

IF

INCLUDE

INITIAL

INTEGER

INTERACT

IOSTAT

LIBRARY

LINEARIZE

LOGICAL

LOOP

MODEL

NOSORT

NOT

OPEN

OPTIMIZE

OR

PACKAGE

PARAMETER

PLOT

PREPARE

PRINT

PROCEDURAL

PROCEDURE

READ

READEL

REAL

REMOTE

RESTART

RESUME

RETURN

REWRITE

SEGMENT

SNAPSHOT

STEP

STOP

STUDY

SUBMODEL

TABULATE

TERMINAL

TERMINATE

THEN

TRANSFER

TRANSFER_MATRIX

TRIM

TRUE

USE

WHEN

WHILE

